MANIPULATIVE THERAPY FOR LOWER EXTREMITY CONDITIONS: UPDATE OF A LITERATURE REVIEW

James W. Brantingham, DC, PhD,^a Debra Bonnefin, DC, MAppSc,^b Stephen M. Perle, DC, MS,^{c,d} Tammy Kay Cassa, DC,^e Gary Globe, DC, MBA, PhD,^f Mario Pribicevic, MChiro, PhD,^g Marian Hicks, MSLS,^h and Charmaine Korporaal, MTechChiroⁱ

Abstract

Objective: The purpose of this study is to update a systematic review on manipulative therapy (MT) for lower extremity conditions.

Methods: A review of literature was conducted using MEDLINE, MANTIS, Science Direct, Index to Chiropractic Literature, and PEDro from March 2008 to May 2011. Inclusion criteria required peripheral diagnosis and MT with or without adjunctive care. Clinical trials were assessed for quality using a modified Scottish Intercollegiate Guidelines Network (SIGN) ranking system.

Results: In addition to the citations used in a 2009 systematic review, an additional 399 new citations were accessed: 175 citations in Medline, 30 citations in MANTIS, 98 through Science Direct, 54 from Index to Chiropractic Literature, and 42 from the PEDro database. Forty-eight clinical trials were assessed for quality.

Conclusions: Regarding MT for common lower extremity disorders, there is a level of B (fair evidence) for short-term and C (limited evidence) for long-term treatment of hip osteoarthritis. There is a level of B for short-term and C for long-term treatment of plantar fascilitis but C for short-term treatment of metatarsalgia and hallux limitus/rigidus and for loss of foot and/or ankle proprioception and balance. Finally, there is a level of I (insufficient evidence) for treatment of hallux abducto valgus. Further research is needed on MT as a treatment of lower extremity conditions, specifically larger trials with improved methodology. (J Manipulative Physiol Ther 2012;35:127-166) **Key Indexing Terms:** *Manipulation; Chiropractic; Physical Therapy; Musculoskeletal Manipulations; Lower Extremity; Hip; Knee; Ankle; Foot*

n 2006, the first extensive, systematic review of chiropractic treatment of lower extremity conditions was published.¹ Building upon this effort and using similar methodology and structure, the first general systematic review of manipulative therapy (MT) for lower extremity disorders was published.² This present work is

an update of the previous 2009 systematic review. However, the conclusions in this manuscript are solely those of the authors of this review. 1,2

Earlier, "chiropractic treatment" was operationally defined as some form, technique, or procedure using applied MT (manipulation, mobilization, and/or other manual or

0161-4754/\$36.00

Copyright © 2012 by National University of Health Sciences. doi:10.1016/j.jmpt.2012.01.001

^a Director of Research and Associate Professor, Cleveland Chiropractic College, Los Angeles, CA.

^b Associate Professor, Texas Chiropractic College, Pasadena, TX.

^c Professor of Clinical Sciences, University of Bridgeport College of Chiropractic, Bridgeport, CT.

^d Adjunct Associate Professor, Murdoch University, Perth, Australia.

^e Research Assistant/Instructor, Cleveland Chiropractic College, Los Angeles, CA.

^f Senior Manager, Amgen Incorporated, Thousand Oaks, CA.

^g Private Practice, Sydney, Australia.

^h Director of Library and Media Resource Center, Cleveland Chiropractic College, Los Angeles, CA.

ⁱ Head of Department and Research Supervisor, Department of Chiropractic, Durban University of Technology, KwaZulu-Natal, South Africa.

Submit requests for reprints to: James W. Brantingham, DC, PhD, 250 Whiteside Place, Thousand Oaks, CA 91362 (e-mail: *Jimbrant2002@yahoo.com*).

Paper submitted October 12, 2011; in revised form November 18, 2011; accepted November 18, 2011.

functional procedures) with and without adjunctive treatment.¹ In the article of Brantingham et al,² the term chiropractic was replaced by the term manipulative therapy to facilitate inclusion of literature from all accessible peerreviewed sources.³ Although the public generally associates chiropractic primarily with the treatment of back pain, only a minority of practitioners perceive themselves solely as spine specialists.⁴ The data suggest that many doctors of chiropractic (DCs), based upon their professional and/or postgraduate training, routinely diagnose and treat extremity conditions. It is of great importance to the chiropractic profession to elevate the awareness of the general public, government, and third-party payers as well as other stakeholders regarding the training and competency of DCs to care for extremity conditions. Although DCs can easily document the use of MT (with and without adjunctive treatment) for lower extremity neuromusculoskeletal problems and disorders for over 100 years, other health care providers, such as physical therapists, general and family physicians, and acupuncturists, are more commonly recognized as able to care for the entire axial and appendicular neuromusculoskeletal system.^{1,5-10} Depending upon the study, type of practice (ie, general or sports), or practice location, extremity problems (upper and lower) have been reported to account for as low as 3.3% to as high as 20% of chiropractic care.^{4,5,11-19} Lower extremity pain and injury have been reported to specifically account for amounts ranging from less than 2.5% up to 10% of common chiropractic practice with most practitioners using extremity MT based upon training, location, methodology, and philosophy.^{4,5,11-20} This significantly contrasts to treatment of nonmusculoskeletal conditions such as chest, abdominal pain, and wellness that, at their greatest reported extent, may amount to 5.3%, 3.7%, and 8.0%, respectively.^{4,5} According to Christensen et al,⁴ extremity treatment is the second most frequently applied procedure within the chiropractic profession with 76.1% reportedly using spinal and extremity procedures as compared with 18.7% who limit their practice to the spine only. Indeed, chiropractic academic curricula are significantly directed toward neuromusculoskeletal disorders associated with the full appendicular (including axial) skeleton and include training in anatomy, biomechanics, differential diagnosis, radiology, radiographic positioning, orthopedics, sports medicine, first aid, rehabilitation, and extremity diagnosis and treatment.¹ Based upon these academic training standards, the current chiropractic graduate should be well qualified to manage common peripheral musculoskeletal disorders.

Further exemplifying the chiropractic profession's contribution as the forerunner to extremity care, a recent trial of high-velocity, low-amplitude axial elongation thrust manipulation (hereafter HVLA manipulation) of the hip (with associated stretching) conducted to determine efficacy in treatment of hip osteoarthritis (OA) (including grade 4 radiographic degeneration with severe pain and

stiffness), determined HVLA MT, was substantially superior to an evidenced based hip exercise protocol.^{21,22} A basically similar protocol was used in a newly published trial (HVLA axial elongation thrust manipulation with associated stretching) and achieved similar significant and beneficial results, this time with the valid and reliable Western Ontario and McMasters Osteoarthritis Index (WOMAC) as well as the previously used Harris Hip Scale.²³ Notably, these trials used the most common and, possibly, oldest chiropractic manipulative procedure used for hip disorders and OA over the last century, further supporting previous, preliminary studies and reports completed on and before 2004.23-27 Significantly, these trials suggest a possible alternative treatment for (1) those who may not or should not have surgery, (2) those who may not or should not chronically use nonsteroidal antiinflammatory drugs (NSAIDS), and (3) those in whom exercise alone is not effective.²⁸⁻³⁵ Although research and publications on MT in the treatment of peripheral disorders have recently exploded, much more study is required. 1,36-40 It is clear that extremity care is not the exclusive domain of any singular health care discipline, and in that spirit, the authors encourage chiropractic, physical therapy, medical, and other researchers to work collaboratively in the search for improved clinical methods for the treatment for patients with lower extremity conditions. 21,27,41-43

In the presence of this rapidly expanding area of research as well as the growing attention to the usefulness of treating peripheral disorders by MT management, the authors believed that it was time to revisit and update the evidence. The purpose of this current review is to update previous reviews; evaluate the quantity, quality, and types of published lower extremity MT research; and rank, grade, and present the characteristics of this evidence.

Methods

A review of literature was conducted by the Cleveland Chiropractic College librarian with input from the authors; an update of previous review articles^{1,2} was undertaken using MEDLINE, MANTIS, Science Direct, Index to Chiropractic Literature, and PEDro from March 2008 to May 2011. Search terms including chiropractic, osteopathic, orthopedic, or physical therapy with MeSH terms for each region. Inclusion criteria required peripheral diagnosis and MT (mobilization and manipulation grades I-V) with or without adjunctive care. Articles were excluded when pain was referred from spinal sites (without peripheral diagnosis), referral for surgical intervention (without full postsurgical healing), and conditions contraindicated or not amendable to MT. Limits were set to English abstract and human. Search terms including chiropractic, osteopathic, orthopedic, or physical therapies were searched with MeSH terms for each region. Manipulation or mobilization treatment for the lower extremity was also searched using MeSH terms. For the hip, this included terms such as *hip injuries*, *hip dislocation*, and *hip joint*. For the knee, this included the terms *knee dislocation*, *knee injuries*, *knee joint*, *collateral*, *meniscus*, and *patellofemoral*. For the ankle, this included *ankle injuries*, *tarsal bones*, and *ankle joint lateral ligament*. Finally, for the foot, terms included *foot bones*, *foot injuries*, *foot joint*, and the term *interphalangeal*.

After the abstracts were reviewed, the literature was placed into 3 broad categories. Category 1 included randomized controlled or clinical trials (RCTs) with MT (with and without adjunctive or multimodal therapy such as exercise/rehabilitation, modalities, NSAIDS, and activity modification, etc).¹

The category 1 evidence table included (1) RCT, which indicates these studies were placebo controlled; (2) RCT[^], which denotes a comparative study (treatment vs treatment; usually with evidence superior to placebo); (3) controlled or clinical trials (CTs), which are generally pseudo or nonrandomized (with systematic assignment or purposive allocation) containing a range of controlled variables, diagnosis, MT vs placebo, comparative treatment or both; and (4) studies that are prospective, measurable, and generally include valid and reliable outcome measures with appropriate statistical analyses.

Category 2 included case series (\geq 3 patients per study) or single group pretest-posttest designs.^{44,45} Category 3 included case reports (\leq 2 patients) but reports not included in an earlier review.¹

Inclusion criteria required peripheral (extremity) diagnosis and some variety or mode of MT. Articles were excluded when (1) pain was referred from spinal sites (without peripheral or extremity diagnosis), (2) there was referral for surgical intervention (unless there was documented full postsurgical healing with or without rehabilitation), (3) the condition was not amendable for MT (rheumatoid arthritis [RA], fracture, ligament tear with instability, etc), (4) a red flag diagnosis was identified, or (5) there was a peripheral diagnosis absent a description of management or intervention. In the current review, osteopathic, physical therapy, and other medical literature was included; however, review-type articles were excluded. Non-peer-reviewed literature, conference proceedings, grand rounds, and discussion articles with no rendered treatment were also excluded.

After abstraction of data and articles was completed, they were blindly ranked by 3 independent authors using set criteria. Articles were retrieved as hard copy, PDF, or electronic format from the Cleveland Chiropractic College Los Angeles library or from associated library collections. All new and/or previously overlooked (after Brantingham et al²) clinical trials found relevant were assessed, reviewed, and ranked using a modified adaptation of the Scottish Intercollegiate Guidelines Network or "SIGN" ranking system of Liddle et al⁴⁶ (instead of the Physiotherapy Evidence Database or "PEDro" scale used the earlier review¹).⁴⁶⁻⁴⁹ General use of SIGN is in conformity with the Council on Chiropractic Guidelines and Practice Parameters systematic reviews (www.ccgpp.org). When documenting treatment, standardized terminology was used; therefore, the term *manipulative therapy* indicated any the following terms: (1) all types, methods, modes, techniques, and procedures of mobilization and manipulation grades I through V; (2) all adjustment/adjustive procedures; and (3) manual or MT procedures.^{3,29,50-52}

The SIGN Scale, Modified Liddle et al Revision, and Limitations of SIGN

One methodological difference between this and an earlier review¹ grew out of the disproportionately inflexible weighting structure represented by singular SIGN components that makes the application to burgeoning areas of historical but weakly supported research, such as is the case with manual therapy, difficult at best and was believed to potentially and otherwise mask the helpful information that could be yielded through the assessment of this literature base. Current SIGN checklist and component explanations discard older, previously acceptable randomization techniques and completely rejected any older noncomputerized randomization methods. However, the literature supports the appropriateness of the restricted use of manual and mechanical randomization methods (such as flipping a coin), particularly in small samples.⁵³⁻⁵⁶ In addition, SIGN overemphasizes a few scale components, excluding all other methodological considerations. This is inconsistent with other validated, widely accepted critical appraisal methods such as JADAD or PEDro where randomization and intention-to-treat (ITT) analyses are considered as one of a number of important methodological concerns, reducing overall trial quality but not excluding a trial from the overall assessment of clinical effectiveness.^{56,57}

Since publication of Brantingham et al^2 in 2009, Bronfort et al⁴⁰ published a comprehensive summary of the scientific evidence regarding the effectiveness of manual therapy in the management of a broad spectrum of disorders including common musculoskeletal conditions and disorders of the spine seen by DCs. Of interest to the current review, Bronfort et al appraised the literature regarding manual and MT for the lower and upper extremities. However, Bronfort et al restricted their selection of evidence to the largest, highest quality, and methodologically "best" RCTs.^{2,40} Using such a limited number of studies does not wholly align with evidencebased medicine or care as conceived by Sackett et al⁵⁸ and others.⁵⁹ Stringent, higher (or highest) quality, methodologically "rigorous" RCTs may be later determined less effective in clinical practice due to the heterogeneity of patient populations, comorbidities, and later problems with patient compliance. Furthermore, patient and practitioner preferences cannot be accounted for solely through RCTs + + applies if all or most criteria from the checklist are fulfilled; where criteria are not fulfilled, the conclusions of the study or review are thought very unlikely to alter.

- + applies if some of the criteria from the checklist are fulfilled; where criteria are not fulfilled or are not adequately described, the conclusions of the study or review are thought unlikely to alter.
- applies if few or no criteria from the checklist are fulfilled; where criteria are not fulfilled or are not adequately described, the conclusions of the study or review are thought likely or very likely to alter.^{47,48}

Fig 1. SIGN checklist rating (L	Liddle et al). ⁴⁶⁻⁴⁸	
---------------------------------	---------------------------------	--

yet may be found, at least to a limited degree, in a variety of other studies.^{55,58,60-63} Moreover, all types of studies and research designs, including the highest quality RCTs, have flaws. Researchers must be cognizant of these limited parameters and interpret the findings carefully, not simply discount and jettison all findings outside the most stringent of RCTs. A broad range of RCTs and CTs as well as single-group pretest-posttest designs (SGPPDs), case series, reports, and expert consensus observations are still needed in the context of a larger appraisal as vital components in guiding delivery of "best patient care" and in developing new directions and areas of research.^{55,58,60-64}

Sackett et al⁵⁸ described the purpose of evidence-based medicine to "...improve practice and best patient care."65 Sackett et al never intended such care to be derived solely from RCTs but rather developed from "tracking down the best external evidence."58,66 Haldeman and Underwood⁶⁰ and others⁵⁹ state that, even today, up to 80% of the practice of medicine (in some areas and specialties) is still based on sources with lesser levels of evidence than merely large, high-quality, or very high quality, methodologically faultless RCTs. Therefore, it appears prudent to use evidence from the full range of studies as noted above. 59,60,66,67 Therefore, in accordance with the abovestated approach, controlled and clinical trials were ranked using the modified revision of the SIGN scale of Liddle et al.^{1,46-48} Although the SIGN RCT checklist rates studies as high quality (+), low quality (-), or neutral (n), the modified SIGN scale of Liddle et al (Fig 1 and further discussion below) uses (++) for high quality with very low risk of bias; (+) for well-conducted studies, with low risk of bias; or (-) for studies with few, no, or inadequately fulfilled or described criteria, with high risk of bias.^{47,48}

The SIGN revisions of Liddle et al have undergone rigorous development and validation procedures, part of a hierarchy of studies widely accepted as reliable.^{46,49} Furthermore, the SIGN revisions of Liddle et al have been evaluated, adapted, and developed by multiple review groups and assessed for methodological rigor, clarity, and practicality in clinical use (principally for diagnosis but used in this review to rank trials) with studies repeatedly finding their checklists producing reliable and consistent results.^{46,48,49}

Interestingly, these procedures, such as blindly picking obscured folded slips of paper out of a box, succeeded in concealing allocation. These older procedures, long used in medicine before easily accessible computerization software, generally remain acceptable for smaller samples of 60 or less ($n \le 30$ per group).⁵³⁻⁵⁵ Consequently, this review's use of a modified SIGN ranking means that manual and mechanical randomization procedures were given decreased methodological weight, indicating lesser quality, but not rejected.^{56,57}

Evidence-based care, with its hierarchy of evidence, notably includes private practice, field, and expert advice and does not posit care rendered only by evidence from RCTs as economically feasible, practical, scientific, or ethical.55 With these considerations in mind, this review includes pseudo or nonrandomized, systematically assigned, and controlled or clinical trials designated as CTs as well as the addition of unlisted, previously undetected, or new case series and reports and singlegroup pretest-posttest studies excluded by previous criteria and added into the ranked and/or updated case report and series sections. In addition, studies using systematic assignment (with less bias) but no longer considered validly randomized have been, after consideration, included in this review because, as some of the first and foundational manipulative studies ever performed, they frequently used or contain significant innovative methodological controls, concepts, and insights. Such studies, evaluated by the present authors as certainly equal to or superior to retrospective case series, have recently been treated as if they constitute no evidence at all, discarded as worthless, and incorrectly excluded from the "evidencebased" hierarchy. 47,53-57,68

Arguably, CTs could be placed in category 2 but increased controls within these CTs often markedly exceed typical case series. In comparing against many peer-reviewed, published RCTs, with high levels of inadequate, erroneous, and/or incorrect report of per protocol or ITT analysis as well as disagreement, lack of consensus, or standards regarding blinding and blind assessment, there is a sufficient justification and rationale for inclusion of these RCTs and CTs. ^{1,21,38,69-80}

The retrospective requirement of ITT levied on all previous studies, including some otherwise methodological improved smaller trials, can, at times, result in completely discounting evidence that should be considered on some level of the hierarchical ladder.^{55,75,76} Furthermore, in many studies with ITT, particularly in systematic reviews of ITT, it is evident that many authors have significant and serious objections to ITT being a sole or the sole arbiter of a valid or legitimate trial (SIGN without modification simply rejects studies that do not use ITT).⁸¹⁻⁸⁴ For this reason, like randomization, it is of utmost importance to use a ranking methodology that balances rigor with reason so as to yield the best evidence possible from the existing

Grade A: Good evidence from relevant studies.

- Results from studies with appropriate designs of sufficient strength to answer the questions addressed.
- The results are both clinically important and consistent with minor exceptions at most.
- The results are free of any significant doubts about generalizability, bias, and flaws in research design.
- Studies with negative results have sufficiently large sample sizes to have adequate statistical power.
- Examples
- Systematic review of RCTs or several RCTs with comparable methodology/results.
- For diagnostic tests: systematic review or at least one study meeting standards of diagnostic accuracy
- For natural history, if no evidence to contrary, evidence might be results from 1 well-done cohort study.
- Grade B: Fair evidence from relevant studies.
- Studies of appropriate designs of sufficient strength but inconsistencies among results or minor doubts about generalizability, bias, and research design flaws or adequacy of sample size.
- Evidence consists solely of results from weaker designs, but results confirmed in separate studies.

Examples

- Several RCTs with differing results, although overall, the results support the conclusion.
- Single RCT with a clinically significant conclusion but doubtful generalizability.
- Systematic review of RCTs with similar methodologies but differing results.
- Diagnostic tests: cohort studies or instrumentation studies of reliability and validity.
- Harm or adverse events: ≥ 2 case-control studies with minimal bias and research design flaws.

Grade C: Limited evidence from studies/reviews.

- Studies of appropriate but substantial uncertainty due to design flaws or adequacy of sample size.
- Limited no. of studies or because of weak design for answering the question addressed.

Examples

- Systematic or narrative reviews or RCTs with contradictory results and/or serious methodological flaws.
- From relevant cohort, case control, ecological studies, and outcomes research.
- · Individual case series.
- For diagnostic studies, nonconsecutive studies without appropriate reference standards and case-control studies unconfirmed by other studies.
- For harm, the evidence might consist of results from a single casecontrol study or case series.
- Grade I: No recommendation can be made because of insufficient or nonrelevant evidence.
- There is no evidence that directly pertains to the addressed question because either the studies have not been performed or published or are nonrelevant.
- Examples: No studies could be identified using optimal search strategies of appropriate databases or by hand searching. Alternately, the literature cited does not have direct bearing on the question being addressed.⁸⁷

Fig 2. Grading of recommendations.

literature.⁶⁴ Therefore, in this review, the absence of ITT results in a lower study rating. Furthermore, if essentially all subjects who began the trial completed the trial, ITT was rated as adequate.^{55,64,81-86}

The initial step of using the modified SIGN of Liddle et al to rank study methodology was followed by a synthesis and considered judgment, whereby the authors scored the evidence with grades of "A, B, C, and I," as outlined in the *Handbook for the Preparation of Explicit Evidence-Based Clinical Practice Guidelines* (Fig 2).⁸⁷ The "considered judgment on quality of evidence" was applied to all reviewed materials, including newly added SGPPDs and case series, and reports from the previous reviews and assessed per the grading recommendations as listed in Fig 2.^{1,2,48,87}

Results

Of the total additional 399 citations located since the review of Brantingham et al,² 142 were determined to be relevant (and, thus, supplementary to the clinical or controlled trials previously found).^{1,2} Of these 142 studies, 8 pertained to conditions effecting the knee, 4 regarding the hip, 5 regarding the ankle, and 2 regarding the foot. These studies, randomized controlled and/or clinical trials (a few by systematic assignment or purposive allocation), were assessed. The case series and reports previously incorporated¹ have not been cited in this investigation; therefore, readers are referred to that review; however, since the review of Brantingham et al,² 4 single-group pretest-posttest studies and 11 case series and reports excluded and/or not previously reported in a single source are included (Tables 1-7).

Evidence

There is a level of B (fair evidence) for MT combined with multimodal or exercise therapy for short-term treatment of hip OA and a level of C (limited evidence) for MT combined with multimodal or exercise therapy for long-term treatment of hip OA. There is a level of B for MT of the knee and/or full kinetic chain and of the ankle and/or foot, combined with multimodal or exercise therapy for short-term treatment of knee OA, patellofemoral pain syndrome, and ankle inversion sprain and a level of C for MT of the knee and/or full kinetic chain and of the ankle and/or foot, combined with multimodal or exercise therapy for long-term treatment of knee OA, patellofemoral pain syndrome, and ankle inversion sprain. There is also a level of B for MT of the ankle and/or foot combined with multimodal or exercise therapy for short-term treatment of plantar fasciitis but a level of C for MT of the ankle and/or foot combined with multimodal or exercise therapy for short-term treatment of metatarsalgia and hallux limitus/rigidus and (for a new category) for loss of foot and/or ankle proprioception and balance. Finally, there is also a level of I (insufficient evidence) for MT of the ankle and/or foot combined with multimodal or exercise therapy for hallux abducto valgus. Further research is needed to include larger trials with improved methodology. Funding is needed for randomized, controlled, and clinical trials as well as

Author	Study type	Condition	Participants	Intervention/control	Results/outcomes	Particulars	Modified Liddle et al
<i>Hip</i> Hoeksma et al ²¹	RCT^ (see § below)	Hip OA	n = 109 Age, 60-85 y Mean age, 71.5 y	HVLA axial elongation hip manipulation with stretch vs exercise 9 Tx over 5 wk FU, 5, 17, and 29 wk	Significant in favor of MT + stretch: primary (GROC or patient self-report of satisfaction % improved vs % not improved dichotomizing a Likert scale) percent improved, 81% at ninth visit, 50% for exercise therapy but not reported at 5 mo FU visit; second outcomes measures, Harris Hip Score and a functional questionnaire, scale made up of 4 questions using VAS (100 worst, 0 best) measurement = 32% overall decrease at ninth visit and 34.5% decrease at 5-mo FU and significant ↑ROM. Generally, all secondary outcome measures are significant for	Adequate power Adequate blinding ITT covered No serious but minor ↑ side effects: 3 left manipulation group, 2 exercise	++
Brantingham et al ²³	RCT^	Hip OA	n = 111 Age, 40-85 y SC group, n = 58 Mean age SC, 42.8 y FKC n = 53 Mean age FKC, 42.7 y	HVLA axial elongation hip manipulation with stretch (SC, note this term will probably change) a similar protocol to Hoeksma et al 2004 vs FKC protocol: above SC hip MT and stretch + FKC MT to lumbosacral, knee, ankle, and foot as indicated 9 Tx over 5 wk FU: 3 mo	MT vs exercise, $P \le .05$. No significant difference between groups (WOMAC, HHS, OTE) at any outcome measure after ninth treatment or at 3-m FU per ANCOVA; P > .05 Significant within-group changes for both groups for all outcome measures after the ninth and last treatment and at the 3-mo FU; all $P < .05$. WOMAC SC group at ninth visit ↓ overall 47% FKC group at ninth visit ↓ overall 36% (WOMAC MCID, 20%) HHS SC group at ninth visit ↑ 10 points FKC group at 9th visit ↑ 10 points	Full power Adequate blinding Blind assessors ITT covered	++

Table 1. Evidence table of MT for patients with lower extremity disorders (note: see below for explanation of use of Liddle et al variation of SIGN: ++, +, -, and for RCT, RCT[^], CT, definitions/explanations and abbreviations below)

Mosler et al ⁹⁷	RCT [^] Randomized crossover design	Hip ROM and function assessed: Does MT to the hip	n = 16 Mean age, 17.6 y Elite water polo team.	Group 1: MT to the hip and associated hip joint soft tissues:	(HHS MCID, ≥4 points) OTE SC group at ninth visit ↑ overall improved 89% OTE FKC group at ninth visit ↑ overall improved 79% (MCID ↑ 30%) ROM was measured at baseline and at end of care for internal and external rotation and for	Power not calculated, small sample size (low power)	+
	crossover design	Does MT to the hip improve athletic performance? "Eggbeater performance (a specialized swimming technique to keep body up out of the water and the ability to jump" believed dependent on hip ROM, function, and pain assessed in water polo players.	Elite water polo team.	soft tissues: Trigger point therapy on TFL, psoas, iliacus, adductors, and gluteals Passive tissue tension to luteals and hip ext rotators TFM to iliolumbar ligt and L4-5 interspinous space Stretches to anterior hip joint capsule, gluteal, and piriformis muscles Lateral hip distraction (mobilization) with a seat belt. Group 2: usual training and recovery for water polo 8 Tx at 2/wk for 4 wk Premeasurement and postmeasurements Then a 4-wk "wash-out"	and external rotation and for abduction and summed for total passive and active ROM. Eggbeater swimming endurance was assessed (keeping out of the water up to the sternal notch). Jump out of the water, height was assessed. A qualitative likelihood of clinically relevant outcome was assessed for improvement for eggbeater and jump (a Likert-like scale) was assessed. Group 1 Tx significant in favor of passive overall ROM and for a 5% likely improvement for the jump; and a 5 and 7 s or likely and possible improvement in eggbeater endurance; all $P \le .05$. Otherwise, there is no other		
				with no Tx, then both groups crossed over and received the opposite treatment.	statistical significance between groups.		
Brantingham et al ²⁷	CT ¥ Systematic assignment randomized first patient (then A,B, etc)	Hip OA	n = 8 Mean age, 69.8 y	HVLA axial elongation and other manipulations and mob of hip joint vs placebo 6 Tx over 3 wk FU: 1 wk 2 withdrew (n = 10)	Significant effect size for MT: WOMAC, NRS vs placebo ROM, Fabere unchanged in Tx group No side effects. One excluded got PT. One sham left, pain to high	Cohens <i>d</i> Large effect size changes Blind assessor 1 unblinding	+

Journal of Manipulative and Physiological Therapeutics Volume 35, Number 2

Author	Study type	Condition	Participants	Intervention/control	Results/outcomes	Particulars	Modified Liddle et al*
Cibulka and Delitto ⁹⁸	RCT^	Hip strain Hip pain with either anterior or inguinal pain anteriorly with pain on stretching hip or hip muscles and a + or painful Patrick- Fabere test. Hip pain required a + Patrick-Fabere ↓ internal rotation and with associated joint dysfunction)	n = 20 Group 1 age, 16 y (SI HVLA grade V manipulation) vs group 2 age, 24 y (hip mobilization in axial elongation grade IV 2× 10 oscillating mobs)	Group 1, SI HVLA grade V manipulation only to decrease hip pain vs group 2, hip mobilization in axial elongation grade IV, 2× 10 oscillating mobs 1 Tx FU: ~4 d	Apparent significant and clinically meaningful differences in \downarrow hip pain in favor of Tx group 1 for NRS (\downarrow 3.8 points of 10, SI HVLA) compared with group 2 (\downarrow 0.80 points, mob). Used Mann-Whitney U test (due to a decision to not use data immediately after Tx; probably should have used nonparametric ANOVA such as Kruskal-Wallis test) Apparently significant in favor of group 1 for \downarrow pain and \uparrow ROM on stress for Patrick-Fabere (9/10 subjects had no pain) vs group 2 (3/10) χ^2 No difference between group regarding \uparrow internal rotation Both groups had some apparent descriptive improvement.	Power not calculated and low with n = 20 (small sample size) Blind assessor single-blind assessment for Patrick-Fabere only (not NRS or for ROM) ITT not adequate	_
<i>Knee</i> Deyle et al ⁷³	RCT	Knee OA	n = 83 Mean age, 61 y	foot vs placebo, nontherapeutic	Significant in favor of MT: at 4 and 8 wk. 8 wk WOMAC ↓ 55%, ↓ time 6-min walk.	Adequate power ITT covered	++
				ultrasound Knee man: mob knee ↑ flex, ext, patellar mob (gradually up to 4++ or thrust) 8 Tx over 4 wk	1-year FU, WOMAC, walk significant. Arthroplasty 20% placebo, 5% in Tx group.		
Deyle et al ¹⁵⁹	RCT^	Knee OA	n = 134 Mean age, 63 y	FU: 4, 8, and 52 wk MT of knee and FKC, SI to foot vs home exercise Knee man: mob knee ↑ flex, ext, patellar mob (gradually up to 4++ or thrust) 8 Tx over 4 wk with FU at 4, 8, and 52 wk	Significant in favor of MT at: 4 and 8 wk with WOMAC 52% to exercise 26%. 1-y FU both significantly improved but: man ↑ satisfaction, ↓ meds	Adequate power ITT well covered	++

Tucker et al ¹⁶⁰	RCT^ Assessor not blind	Knee OA	n = 63 Mean age, 59.3 y	CMT to the knee (HVLA) vs Meloxicam 1× a day for 3 wk. Knee man: long axis, A-P, P-A, and patellar mob NSAID previously superior to placebo	NRS, VAS, PSFS. 3 left trial: NSAID side effects: nausea,	No patients left HVLA group	+
Perlman et al ¹⁰⁵	RCT [^] Soft tissue only (massage therapy)	Knee OA	n = 68 n = 34 Group 1 Mean age, 70.4 y Group 2 Mean age, 66.2 y	therapy. At 8 wk, then crossed over (beginning at ninth week and received group 1 MT or ST massage therapy as outlined for group 1.	Statistical and clinically significance in favor of the MT (group 1 massage therapy) vs group 2 or UC with: WOMAC (\downarrow 17.2 points on global score per conversion to 100 points worse $P = .005$) WOMAC also significantly \downarrow in favor of group 1 (MT) for pain, stiffness, and functionality; all $P \le .05$. Statistical and clinical significance for \downarrow VAS pain 17.2 mm in favor of group 1 (MT); $P = .004$. ROM not significant between groups; $P = .15$ Significant in favor of group 1, MT for time (\downarrow in seconds) to walk 50 ft (15 m), s $P = .02$ Similar outcome in favor of group 1 at 16-wk FU for crossover group; all $P \le .05$ and in pooling both groups, ROM was significantly increased in favor of MT (ST) vs UC at $P = .03$ (per combined 8-wk FU).	Adequate power Adequate blinding Blind assessor ITT complete Large drop out in both groups (they state "common" in this age group; dealt with through ITT). No serious adverse reactions but 1 patient reported ↑ discomfort (with MT) and refused to return for the 8-wk FU	+
 Moss et al ¹⁰⁶	RCT Allocated to 3 Txs Assessor, patients blind	Knee OA	n = 38 Age, ≥40 y	Supine A-P mobilization of tibia on femur Within subjects repeated measures vs placebo (holding position with measurements) vs no contact with measurements 1 Tx with immediate postintervention	Significant ↓ in pain (↑ in ALG) and ↑ speed in "up and go" (from chair).	Adequate power Adequate blinding ITT adequate No drop outs	+

Brantingham et al Lower Extremity Literature Review

Author	Study type	Condition	Participants	Intervention/control	Results/outcomes	Particulars	Modified Liddle et al
Bennell et al ³⁴	RCT^	Knee OA	n = 140 Mean age, 68.6 y	PT program: knee taping, extensive exercises, ST, thoracic spine mobilization vs placebo 8 Txs at 1/wk for 4 wk, then 1×/2 wk for 8 wk	No significant difference between groups Slightly significant outcome for PT at 24 wk for VAS pain, global improvement (2 areas) of 12 assessments (VAS pain and activity, WOMAC, KPS, SF-36, AQoL, quad strength, step test).	Power adequate, In to Tx good, Poor design and internal validity: Thoracic spine manipulation? Double blind Drop out: 13 PT (2 side effects others various reasons) 2 placebo	+
Ko et al ¹⁰⁷	RCT	Knee OA Sx duration: group 1, 5 y Group 2, 4.9 y	n = 35 RT group n = 17 Mean age, 65.3 y MT group n = 18 Mean age, 63.7 y	RT Tx (exercise and ROM treatment) vs MT (RT + manual therapy). RT or exercise: KJ extended, static tension in quads maintained for 6 s, the 10-s break; repeated 10×. Standing with KJ extended and then did knee extensions with elastic band (yellow) 12× for 1.5 min, then did a 1-s concentric contraction and a 2-s eccentric contraction with both legs for 1.5 min. Then did stop ups 12× for 1.5 min; if possible, the step height was increased. "Permissible exercise" done more than 30 min without causing pain. RT ROM. first sat and stretched legs, the moved KJ from middle of flexion to end of extension range and maintained the extension 3 s with a 3-s break; repeated 2.5 min. Repeated but moving	Significant difference $(P \le .05)$ for both MT and RT groups at 8 wk (but descriptively greater in the MT group) for 1.↑ Strength of the quadriceps posttreatment Significant difference $(P \le .05)$ for MT group at 8 wk for 2. ↑ Kinesthetic positional sense degrees proprioception 3. Functional difference for 10-m walk speed, timed step up, and timed chair sit (see article for details)	Power not calculated No blinding	+

 Table I. (continued)

Fish et al¹⁰⁸

	al ¹⁰⁸ RCT^	Knee OA Average duration of KOA Sxs >3.4 years	n = 60 Age, 40-75 y Mean age, 62 y RT group 1 n = 20 Topical capsaicin only Mean age, 62 y MT group 2 n = 20 Mean age, 60 y Group 3 n = 20 MT + capsaicin combined Mean age, 63 y	techniques; but other ↓ accessory motions occasionally treated similarly; primarily used Maitland 1999 technique (see article for details) 6 Txs over 3 wk vs group 3 MT + capsaicin combined: MT of knee = mobilization: careful graded/slowly increased physiologic mob	No difference between Txs. However, capsaicin is better than placebo therefore and mob alone and mob alone + capsaicin were equivalent; but not definitive (a type II error possible) due to small sample size. Significant within-group improvement in 2 groups for WOMAC at 1-wk FU mob and mob + capsaicin but not for capsaicin alone. (Friedman ANOVA; $P = .000$). Noteworthy is group 3 mob + capsaicin had an overall WOMAC decrease of 42.3%. Flexion ROM was significant for mob and mob + capsaicin at 1-wk FU ($P < .05$) with a median \uparrow of 5° for mob + capsaicin. NRS 101 pain scale changes were statistically significant at the final 1-wk FU (1 mo), with a \downarrow of 8.45 points in the group 1 or capsaicin ($P = .049$), a \downarrow of 14.0 points in group 2 mob ($P = .000$) and statistically and	Calculated full power at n = 128 Power low n = 60 (small sample size) Single blind: participant ITT insufficiently addressed Drop out: 13 PT (2 side effects others various reasons), 2 placebo	
knee to \uparrow flex, ext, patellar($P = .000$), and statistically and clinically significant with a \downarrow of				knee to \uparrow flex, ext, patellar	(P = .000), and statistically and		

Author	Study type	Condition	Participants	Intervention/control	Results/outcomes	Particulars	Modified Liddle et al*
Pollard et al ¹⁰⁹	RCT	Knee OA	n = 43	thrust technique (all gradually up to 4++ or with axial elongation up to HVLA thrust) Primarily using Maitland techniques (see article for details). 6 Txs over 3 wk. Early forced or forceful end ROM (at end range into accessory motion) of knee flexion or extension not allowed (see article for details) Capsaicin previously demonstrated superior to placebo for OA Outcomes: baseline, 3-wk and 1-wk FU Groups 2 and 3 2×/day for 3 wk (6 Txs) Group 1 MT		Power not calculated	+
		Required duration of KOA Sxs ≥1 y	Age, 47-70 y Mean age, 62 y MT group 1 (or MIMG protocol) n = 26 Mean age, 56.5 y Sham/placebo group 2 n = 17 Mean age, 59.6 y Physical contact at knee with sham modality	MT of knee: using the MIMG knee protocol 1. Myofascial (patellar) mobilization technique: careful graded mob/subject seated patellar fixed, subject extends knee until just below pain $10\times$ (with or without thrust at any point; see article for details); + axial elongation thrust technique (with added internal or external rotation when indicated) vs group 2 placebo/sham Palmer hand placed near position for treatment of knee (without force) followed by interferential modality set at zero.	a superior Tx compared with group 2 placebo Tx for knee OA but may not be generalized and may be considered a pilot or feasibility study However, as a feasibility study conducting statistical analysis, there was an apparent significant difference between Txs in favor of MT group 1 for VAS pain (1.1 cm on a 100-mm scale, difference $P \le .05$) Also, apparently significant in favor of MT group 1 for the overall functional scale (11 questions using VAS: Did Tx help you? Pain/discomfort improved? Mobility improved? Tx painful? Activities	Power low n = 43 (small sample size) Single blind	

n = 179 Age, 18-40 y Mean age, 29.3 y $100 \stackrel{\bigcirc}{\rightarrow}$ n = 40 per group (n = 44 for 10% drop out)	FU: immediate 4 groups: PT (+MT or patellar mobilization) only (multimodal Crossley et al PT protocol = progressive strengthening and retraining with EMG, taping, education, and home exercise, see article) Eact or the bacing and PT	was Tx to \downarrow pain and \uparrow function? All $P < .05$ except for has knee Tx improved mob in hip? $P > .05$. However, low power and small sample size could = type 1 error etc Recommendation: Use orthotics or PT (+MT) or PT (+MT) + orthotics to shorten symptoms of PFPS in the short term. Long term at 1 year no difference; but note that 80% improved in this study at 1 year compared with a 4-year FU of comb 50% in another study.	Full power and sample (calculated for VAS usual 15-mm change) 80% at 0.01 Blinding: adequate Blind assessor ITT adequate No statistical difference between 3 "real" treatments Orthotics, PT (+MT), PT (+MT) + orthotics at	++
	Foot orthotics and PT (+MT), fit for comfort (slightly heat or wedge modifiable Vasyli, ethylene vinyl acetate orthotics) Foot Orthosis (OTC Vasyli Orthotics International) only, flat foot not assessed or required. Flat inserts (control) fit to shoes (ethylene vinyl acetate), control, no arch etc 6 Txs over 6 wk then self-management FU: 6, 12, and 52 wk	only 50% in another study (see article) Significant for 3 treatments (orthotics, PT + MT, and PT + MT + orthotics) at 6 and 12 wk, except for orthotics vs flat inserts at 6 wk by 19.8% or $P = .01$ with NNT 4: Significantly in favor of orthotics and PT (+MT) or the PT + MT + orthotics groups For GROC (Likert scale) vs flat inserts But no statistical difference for GROC (Likert) between orthotics vs PT (+MT) or PT (+MT) + orthotics	PT (+MT) + orthotics at 6 and 12 wk, but all have within-group significant changes. At long-term 1-year FU, no difference between all treatments, and all had significant VAS worst pain severity >20-mm decrease.	
		Significant for VAS (worst only), AKPS, and Functional Index Scale Side effects particularly from orthotics without or with PT (72%), tape (tape 40%), and PT (41%) etc, mostly mild and resolved.		
n = 31 Age, 18-45 y Mean age group A, 27.9 y Group B, 30.7 y	2 groups Group A MT of the local KJs (mobilization of patella and mobilization or manipulation of local KJs with soft tissue	Recommendation: Feasibility of RCT is possible Small sample size does not allow extrapolation of intergroup findings (there was no difference	Low power due to small sample size. Sample size for full power at 80% calculated for the AKPS Blinding adequate:	+

Collins et al¹¹⁴ RCT^

Brantingham et al¹¹⁵

RCT^

A feasibility study carrying out all components of an RCT

PFPS

PFPS

(continued on next page)

Brantingham et al Lower Extremity Literature Review

Author	Study type	Condition	Participants	Intervention/control	Results/outcomes	Particulars	Modified Liddle et al*
				an exercise protocol: progressive strengthening and retraining with education and home exercise. Group B received FKC or MT (as above) to the local knee but also MT (mob or manipulation) to the lumbosacral, SI, and	outcome measure), but within-group findings can be reported. AKPS (reported MCID 8 points), VAS (reported MCID 1.5 cm), and the PSS (a dichotomous "discharged" [no longer needs treatment] or "referred," feels the need for more treatment).		

van den Dolder and Roberts ¹¹⁶	RCT MT only	PFPS	n = 38 Group A n = 21 Mean age, 55 y Group B n = 17 Mean age, 52 y	knee fully extended and flexed), patellar mobilization (tilt mob and sustained L-M glide while knee is flexed and extended) per Cyriax technique (1984).	(reported MCID, 20 mm). Active knee ROM in flexion and extension, the step test, and a patient satisfaction (Likert) scale (from very dissatisfied to very satisfied)	Fully powered Adequate blinding: Blind assessor ITT adequate Sample size for full power at 80% calculated for a 20-mm MCID change in the PFPSQ, n = 19 per group or n = 38.	++
Hains and Hains ¹¹⁷	RCT^ Crossover study	PFPS Anterior knee pain >3 mo	n = 38 Age, 18-50 y Group 1 (Tx), n=27 Mean age, 25.3 y Group 2 (sham Tx) n = 11 Mean age, 25 y	both used to find the trigger point (then myofascial or trigger point ischemic; then application of Tx to located point [per Travel J, 1992] around patellar/at local knee	subjects treated by local knee trigger point/myofascial treatment for VAS both \downarrow >2 cm; all $P \le .05$ vs sham Significant \downarrow in favor for all subjects Tx with knee trigger point/myofascial Tx with a decrease in PGT; all $P \le .05$ vs sham Experimental significance maintained up to 6 mo No significant change for sham Tx	Fully powered statement (but post hoc tests) Adequate blinding: Double/assessors participants Adequate ITT	+

(continued on next page)

Brantingham et al Lower Extremity Literature Review

	142
Lower Extremity Literature Review	Brantingham et al

Table I. (continued)

Author	Study type	Condition	Participants	Intervention/control	Results/outcomes	Particulars	Modified Liddle et al*
Hillerman et al ¹¹⁸	CT Allocation by presentation: PFPS or PFPS + SI joint dysfunctional	PFPS and quadriceps inhibition/weakness	n = 20 Age, 18-40 y (difficult to recruit sample), PFPS with and without SI	SI manipulation vs knee axial elongation manipulation 1 Tx with immediate FU	Significant ↑ in intragroup knee extensor strength by Cybex after SI manipulation	ITT adequate No loss of participants	_
Drover et al ¹¹⁹	CT Not randomized Focus: effect on knee extensors	PFPS (AKPS)	n = 9 Mean age, 25.7 y	ART technique for knee (vastus muscle etc) vs testing normal contralateral leg 1 Tx with immediate FU	No significant change for all measures: 1. Knee extension strength Biodex (Biodex Medical Systems, Shirley, NY). 2. muscle inhibition: interpolated twitch torque technique	ITT adequate No loss of participants	-
Crossley et al ⁷²	RCT Double blind	PFPS	n = 71 Age, ≤40y	PT (patellar mobilization tape, exercise, stretch, soft tissue) vs placebo (detuned ultrasound, tape, gel) 6 Txs over 6 wk FU: 3 mo for PT only		Adequate power Adequate blinding Double blind ITT reported	++
Suter et al ¹²⁰	RCT	PFPS (AKPS)	n = 25 Mean age, 34 y	HVLA SI manipulation only for PFPS vs control, no adjustment Both measured for MI, EMG, and muscle strength in quadriceps 1 Tx with immediate FU	Significant decrease in MI by 7.5% using interpolated twitch torque technique	Double blind ITT adequate SI relieves PFPS knee pain No loss of participants	++
Rowlands and Brantingham ¹²¹	RCT	PFPS	n = 30 Mean age, >18 y Some drop outs, not noted	Mob of patella vs placebo (detuned ultrasound) 8 Tx over 4 wk FU: 1 mo	Significant in favor of mob: ↓ pain with ALG and ↓ pain with McGill vs placebo		+
Stakes et al ¹⁵⁷	RCT [^] (see § below)	PFPS	n = 60 Mean age, 30.5 y	Patellar mob vs patellar mob and HVLA SI or L/S adjustment 6 Txs over 4 wk	No difference between groups Power not calculated; intergroup statistics must be viewed with caution. Significant intragroup change	Single blind For both groups, magnitude of changes in NRS and PFJE scales % appear statistically and clinically meaningful	+

					for both groups: NRS, PFJE, SFMPQ, PSFS, and ALG	8 drop outs: 2 per group transport problems No side effects 2 per group lost to FU.	
Taylor and Brantingham ¹⁵⁸	RCT (see § below) Blind assessor No unblinding	PFPS	n = 12 Mean age, 30.17 y	Patellar mob vs patellar mob + home exercise 8 Tx over 4 wk FU: 1 wk	Descriptive statistics suggests that both Txs are helpful. Nonparametric intragroup significant for NRS, SFMPQ, ALG, and PSFS	Subjects replaced ITT adequate No side effects No loss of participants	+
Ankle Pellow and Brantingham ¹²³	RCT	Ankle sprain Subacute and chronic Grade I and II >5 d	n = 30 Mean age, 24.9 y	Manipulation ankle axial elongation (HVLA) vs detuned ultrasound (placebo) 8 Txs over 4 wk or until Sx free FU: 1 mo	Significant for MT for SFMPQ, functional improvement, at eighth Tx, and for SFMPQ, functional, ROM 1-mo FU vs placebo	Power adequate for intragroup No ITT Single blind	+
Green et al ⁷⁴	RCT^	Ankle sprain Acute 72 h	n = 41 Mean age, 25.5 y	RICE and tape and A-P talus mob vs control (RICE and tape) ≤ 6 Tx over 2 wk	Significant for MT for \uparrow ROM, \downarrow pain, \uparrow gait. Faster recovery, activity with mob	Adequate blinding Blind assessor ITT adequate No adverse effects No drop outs	+
Coetzer et al ¹²⁴	RCT [^] § Retrospective second author: appropriate randomization, adequately described in the article (see § Coetzer et al 2001).	Ankle sprain Acute ≤24 h	n = 30	Both groups received (for ethical and methodological reasons) SC = RICE. MT: HVLA ankle manipulation—axial elongation and subtalar joint eversion vs NSAID (Piroxicam) 6 Txs over 2 wk with 1-mo FU NSAIDS, 40 mg for 2 d and 20 mg for 5 d with 1-mo FU	No significant difference between groups except sixth $Tx \uparrow ROM$ in favor MT; blind assessor detected \downarrow restricted motion in joints in MT group at FU All groups had significant intragroup improvement: ALG (\downarrow pain), goniometer (\uparrow ROM), NRS (\downarrow pain), athletic limitation (\uparrow function), and SFMPQ (\downarrow pain)	Power generally low Otherwise essentially equal effects Blind assessor for motion palpation	+
Eisenhart et al ³⁸	RCT^	Ankle sprain Acute Grade I and II <24 h	n = 55 Mean age, 30.5 y	SC (RICE + NSAIDS) vs SC + OMT (combination of HVLA, functional, and ST) 1 Tx with premeasures and postmeasures in ER FU: 1 wk	Significant for MT after first Tx for ↓ swelling, ↓ VAS. 1 wk/FU: Significant for MT ↑ ROM DF	ITT performed Single blind Loss 15 participants to FU	+

	144
Lower Extremity Literature Review	Brantingham et al

Table I. (continued)

Author	Study type	Condition	Participants	Intervention/control	Results/outcomes	Particulars	Modified Liddle et al*
Collins et al ¹²⁵	RCT Double blind	Ankle sprain Subacute Grade II	n = 16 Mean age, 28.5 y	MWM vs placebo (sham) or control (holding position only) 1 Tx with premeasures and postmeasures	MT significant for ROM ↑ DF No change in PPT (ALG) or TPT	2 left trial, 1 had increased pain. ITT not reported	+
Vicenzino et al ¹³⁵	RCT Random to 3 Txs Double blind	Ankle sprain Chronic recurrent <20-mm DF in injured ankle inclusion	n = 16 Mean age, 19.8 y	 MWM weight-bearing PTG and DF ROM Ditto but nonweight bearing Control, position held Tx with after FU 	Significant for MT ↑ PTG° and DF° weight-bearing and non-weight- bearing MWM Large effect sizes PTG Moderate effect ↑ dorsiflex vs control	ITT adequate No loss of participants	++
Lopez-Rodriguez et al ¹²⁶	RCT	Ankle sprain Grade II >5 d	n = 52 Mean age, 22.5 y	Manipulation ankle axial elongation (HVLA) and supine HVLA A-P talar thrust vs placebo (holding position) 1 Tx with after FU	proprioception with	ITT adequate No loss of participants Single blind	+
Kohne et al ¹²⁷	RCT [^] (see § below) Baseline characteristics and statistics essentially equal (see Kohne, E dissertation)	Ankle sprain Chronic recurrent Grade I and II or AIS	n = 30 Mean age, 31.7 y		Significant for group 1 (6 Txs) for ↑ proprioception and ↑ DF ROM: ROM: strapped inclinometer— kinesthetic proprioception significant postmanipulation compared with control (° relocation of position in space) ankle moved only by participant ↓ bias	A "few" sensed ↑ "instability" in group 1 (per Kohne dissertation)	+
Joseph et al ¹²⁸	RCT [^] No blinding reported HVLA manipulation grade 5 vs mobilization grades III and IV (ME technique) All subjects who began completed treatment in same groups (except 1 subject replaced and data management not reported)	Ankle sprain AIS (chronic recurrent inversion sprain grades I and II)	n = 40 n = 20 Mean age Group 1, 30.5 y Group 2, 28.4 y	Group 1: Manipulation, HVLA thrust grade 5 ankle axial elongation. Group 2: Mobilization = ME technique per Greenman (1996) = PIR with stretch; a form of mobilization: ankle is held at end point of restricted end physiologic and accessory DF ROM and at end of the restricted anterior to posterior talar	NRS, 101 for pain (0, 100 mm); OLST eyes open and closed for proprioception/balance; FES; SFMPS; ROM: DF and PF No significant difference between groups at 3 wk for all outcome measures (after 6 Txs); all MANOVA, $P > .05$. Both groups significant within- group change at 6 Txs for all outcome measures; all $P \le .05$, and clinically meaningful differences for pain (NRS, 101), OLST, and DF ROM Within-group (paired <i>t</i> test): Significant and clinically	ITT inadequate No significant adverse reactions or side effects reported. Loss of 1 patient reported (not clear what was done with data) and replaced; otherwise, all that began trial ended trial in	+

			<i>,,</i>	meaningful for either form of MT for: \uparrow in proprioception (OLST) eyes closed; both $P = .000$. Manipulation OLST \uparrow by 10.45 s and ME (mob + stretch) \uparrow by 10.05 s; the NRS at Sixth visit; significant and clinically meaningful for a \downarrow in NRS, 101 for pain both >37 and 39.6 mm manipulation and mob (ME), respectively; also for \uparrow in ROM or DF 9.8° and 7.7° manipulation and mob (ME),		
RCT Apparent randomized, placebo-controlled trial using a within-group random allocation to 1 of 3 "procedures" randomized to 3 different procedures/Txs	Ankle sprain Subacute inversion or lateral ankle sprain grade II (from 2-10 weeks before treatment).	n = 13 (n = 13 × 3 = 39 evaluations 48 h apart) Mean age, 29.5 y (20-49 y) Mean duration of pain/injury, 5 wk. W persistent pain and decrease DF by 20%	the talus on the distal tibia A-P (using Maitland's technique 1991), 1 min of oscillation with a 30-s rest between 3 applications in the "long sitting position"—for all 3 groups (see text or article). Enough force was used to cause a gliding motion of the talus but not to produce pain (grade III to probably grade IV)	respectively (see article for details) Significant in favor of group 1 ROM (\uparrow for ankle DF of 9.6 mm; P = .000) compared with placebo	sample size) ITT complete Double blinding subject and assessors; no significant adverse reactions or side effects reported. ROM: DF measured using the "lunge" weight-bearing technique AFS per Kikkonen (1994) included 9 items: 3 subjective questions	+
					(continue	ed on n

Yeo and Wright¹²⁹

Brantingham et al Lower Extremity Literature Review

Author	Study type	Condition	Participants	Intervention/control	Results/outcomes	Particulars	Modified Liddle et al ³
				randomly allocated each 48 h apart. All had preblind measurement and postblind measurement blindly taken.			
Reid et al ¹³⁰	RCT With crossover design (both groups randomly received Tx or sham and data recorded pre and post) See article MWM per Mulligan 1995	Ankle sprain Chronic, average >3- mo duration with majority >12 mo or AIS Study design was to test for a change in ROM (DF)	Mean age, 24 y		ROM after 1 MWM Tx (\uparrow 4.5 mm ankle DF of $P = .019$, paired <i>t</i> test) compared with placebo/sham and no	ITT complete Double blind: assessors and	+
Grindstaff et al ¹³¹	RCT Randomly assigned to 3 groups Study to detect post-HVLA manipulation changes (H-reflex and M-response measurements for CAI [also known as AIS]) Used surface electromyography	Ankle sprain (H-reflex and M-response measurements of muscle activation) post-HVLA manipulation for AIS Used surface electromyography (the MP150; BIOPAC Systems, Inc) from proximal or distal	n = 43 Group 1, n=15 Mean age, 25.2 y Group 2, n = 15 Mean age, 27.5 y Group 3, n= 13 Mean age, 23.8 y	Group 1: proximal tibiofibular HVLA manipulation to improve anterior glide of the fibula. The proximal fibula grasped and associated soft tissue pulled laterally; the knee was fully flexed and then the externally rotated distal leg was suddenly forced into further end	No significant difference for the fibularis longus; all (ANOVA, all $P < .05$) Significant difference (with ANOVA) in favor of the soleus H/M ratio (and activation of the oleus muscle) at all postintervention periods compared with the other Tx and the control ($P < .05$) except at the 20-min postintervention.		+

 Table I. (continued)

				an A-P thrust at the distal fibula is delivered (as above). Group 3 (control): no treatment 1 Tx was delivered and the H-reflex and M response EMG MP150 results obtained after each of the 2 Txs or no treatment. There was a premeasurement and measurements taken immediately after at 10, 20, and 30 min post-HVLA manipulations			
Lubbe et al ¹³²	RCT^	AIS: chronic recurrent inversion sprain Average, previously 4-6 sprains	n = 33 Age range, 18-45 y Group 1 Mean age, 25.5 y Chronicity, 192 wk Group 2 Mean age, 25.7 y Chronicity, 336 wk	1	Significant ANOVA between groups in favor of group 1 for VAS ($\downarrow \ge 30$ mm), ALG (\uparrow 1.4 kg), and motion palpation (after last treatment \downarrow in "fixations" or decreased accessory motions); all $P \le .05$ Significant within-group ANOVA change for all outcome measures for groups 1 and 2 for VAS, FADI (both \uparrow 15 points), and BBS (both group 1 \uparrow 12.7 points and group 2 \uparrow 10.7 points); all $P \le .05$	Power low ITT complete Blind assessor No significant adverse reactions or side effects reported.	++

feel/end ROM flexion

with the heel pushed

toward buttock and if

cavitated stopped if not

repeated again with or

without cavitation

tibiofibular HVLA manipulation to improve posterior glide of fibula, or an A-P palmer contact is placed on lateral distal tibiofibula joint—at the distal fibula; the other had wraps around opposite side and after A-P motion is removed,

(see article).

Group 2: distal

Activation of muscle may

facilitate a weak or inhibited

muscle, allowing a window

for rehabilitation.

(the MP150;

BIOPAC Systems,

tibiofibular joint

musculature

with CAI

Inc, Santa Barbara, CA)

from proximal or distal

manipulation in ankle

activation in patients

tibiofibular joint

manipulation in ankle

musculature activation

in patients with CAI

Author	Study type	Condition	Participants	Intervention/control	Results/outcomes	Particulars	Modified Liddle et al'
Foot				Proprioception exercise using the Bosu ball: subject stood and balanced on ball for 10 min per session. Both groups initially taught rehabilitation at clinic, then at home; groups 1 and 2 at FUs could repeat rehab at clinic if needed to assure it is correctly being done; otherwise, all did exercise at home (with diary). 6 Tx at 1-3/wk for 3-5 wk Outcomes after third and sixth visit	Greater and more complete and faster recovery in group 1		
Plantar fasciitis Dimou et al ¹³⁶	RCT [^] Randomization; see § below	Plantar fasciitis "Plantar heel pain" Chronic >7 wk	n = 20 Mean age, 42.4 y	adjusting + stretching vs	Significant \downarrow pain between groups in NRS at 4 wk in favor of group 1: MT of the foot and ankle and stretching Significant (intragroup) for both Txs (but not different) at 9 wk for \downarrow first step pain, \downarrow heel pain at rest, and ALG	No side effects Blind assessor All participants	+
Cleland et al ¹³⁷	RCT	Plantar heel pain Commonly diagnosed as "plantar fasciitis" in the past	n = 60 Mean age, 48.4 y Group 1, n = 30 Mean age, 47.4 y Group 2, n = 30 Mean age, 49.5 y 3 drop outs in both groups; both group 1 did not return for various reasons; at the 6-mo FU, 2 in both groups did not return FU questionnaires, so both n = 27, or n = 54 finished all Tx	ultrasound at 1.5 W/cm ² at 100 Hz for 5 min (before iontophoresis) and cryotherapy.	Significant and clinically superior in favor of the MTEX group 2 for: the LEFS (0-80 scale higher is best) with a reported MCID of 9 points. LEFS at 4 wk MTEX + 13.5 points more $P = .001$ At 6-mo FU MTEX + 9.9 points $P = .027$ Also used the FAAM (0-84 score higher is best) with a reported MCID of 8 points FAAM at 4 wk MTEX + 13.3 points more; $P = .004$ At 6-mo FU MTEX + 13.6 points; $P = .012$ NPRS at 4 wk MTEX = \downarrow 1.5 points; $P = .008$	ITT adequate No significant	++

				ST mob at triceps surae and insertion of PF at medial tubercle and rear foot eversion mobilization. Also for restricted physiologic and accessory motion such as ankle DF (from restricted A-P talocrural motion or restricted axial distraction manipulation; also, other FKC MT to the hip joint and other lower extremity joints as indicated such as the knee, patellofemoral joint, the prox fib-tib joints, etc [see article for details]). Plus all subjects were instructed to do self-mobilization of the ST joint into eversion and manual ST mob of the plantar fascia at home along with gastrocnemius and soleus stretches identical to the EPAX group. 6 Txs over 4 wk Outcomes: at 4 wk (end	Not significantly different at 6-mo FU NNT: 4 for the MTEX, which is reported as to effective treatment		
				of care) and FU: 6 mo			
Metatarsalgia Petersen et al ¹⁴⁰	CT ¥ Systematic assignment (first patient randomized)	Metatarsalgia (common or mechanical)	n = 40 Mean age, 49.5 y	intermetatarsal glide,	Significant in favor for MT vs placebo for SFMPQ, NRS, FFI, and ALG. Note: placebo patients started with higher level of pain.	Not clear which groups None from side effects	-

	150
Lower Extremity Literature Review	Brantingham et al

Table I. (continued)

Author	Study type	Condition	Participants	Intervention/control	Results/outcomes	Particulars	Modified Liddle et al
Govender et al ¹⁴¹	RCT (see § below)	Morton's neuroma aka Morton's metatarsalgia	n = 40 Mean age, 51 y	J 1.	Significantly in favor for MT: NRS and ALG vs placebo	Power adequate Single blind ITT adequate No loss of subjects No side effects reported	+
Decreased proprioce balance, and funct from foot and ank injury, decreased and/or joint dysfu	tion le ROM,					1	
Lopez-Rodriguez et al ¹²⁶	RCT	Ankle sprain Grade II >5 d	n = 52 Mean age, 22.5 y	Manipulation ankle axial elongation (HVLA) and supine HVLA A-P talar thrust vs placebo/control (holding position) 1 Tx with immediate post-FU	proprioception with	See above Single blind No loss of participants	+
Vaillant et al ¹⁴⁸	RCT Placebo controlled crossover trial	Foot and ankle joint dysfunction and plantar myofascial dysfunction Vellas (1997) \downarrow OLST is a significant factor in predicting injurious falls Muir (2010) OLST also found to be a significant risk factor for falls Kemoun 2002 \downarrow ankle DF = \uparrow fall risk	A 1 1	Group 1: MMP or massage and mobilization protocol: massage to plantar aspect of the foot using friction, static, glide, and pressure focus on sole of foot. Mobilization: DF and plantar flexion of talocrural joints, eversion/inversion of subtalar joints, A-P glide, torsion, flex, and ext of midtarsal joints, A-P glide, and rotation of tarsometatarsal joints of intermetatarsal joints of intermetatarsal joints. AII Tx $3\times/foot$ for 20 min vs group 2: PP—3 demagnetized magnets placed in region of the fifth metatarsals for 20 min. Both groups have a washout period of 1 wk	Significant between groups in favor of MMP (n = 27) for the OLST and increased speed in performing the timed up and go test; both $P <.01$ compared with PP or placebo. Not different for the lateral reach test. 1. \uparrow OLST time and 2. \uparrow speed in performing TUG test	Single blind No side effects reported 1 drop out due to loss of	+

Joseph et alRCT^Ankle sprain $n = 40$ Group 1: ManipulationNRS,101 for pain (0, 100 mm);See above $+$ HVLAAIS, chronicMean ageGroup 1, 30.5 yGroup 2, 28.4 yMKS,101 for pain (0, 100 mm);See above $+$ mobilizationrecurrent inversionGroup 2, 28.4 yGroup 2, 28.4 ymobilizationSFMPS, ROM: DF and PFLoss of 1 patient reportedgrades III and IV(ME technique)	Kohne et al ¹²⁷ See above: ankle sprain	RCT^	AIS, chronic recurrent inversion sprain	n = 30	elongation (HVLA) Group 1: 6 Txs over 4 wk	proprioception significant postmanipulation compared with control (° relocation of position in space) strapped inclinometer ankle moved by	See above	+
further DF and posteriorInterningth for either form of force against the talus, and held 10 s. RepeatedMT for: \uparrow in proprioception (OLST) eyes closed; both $P =$ $5\times$ $5\times$.000. Manipulation OLST \uparrow by 10.45 s and ME (mob + stretch) \uparrow by 10.05 s, the NRS at sixth visit; significant and clinically meaningful for a \downarrow in NRS, 101 for pain both >37 and 39.6 mm manipulation and mob (ME),	Joseph et al ¹²⁸	HVLA manipulation grade 5 vs mobilization grades III and IV	AIS, chronic recurrent inversion sprain grades I	Mean age Group 1, 30.5 y	HVLA thrust grade 5 ankle axial elongation Group 2: Mobilization, ME technique per Greenman (1996)—PIR with stretch, a form of mobilization: ankle is held at end point of restricted end physiologic and accessory DF ROM and at end of the restricted anterior to posterior talar movement (restricted posterior talar movement), held 5 s then further DF and posterior force against the talus, and held 10 s. Repeated 5×	OLST eyes open and closed for proprioception/balance, FES, SFMPS, ROM: DF and PF No significant difference between groups at 3 wk for all outcome measures (after 6 Txs); all MANOVA $P > .05$. Both groups have significant within-group change at 6 Txs for all outcome measures; all $P \le .05$, and clinically meaningful differences for pain (NRS, 101), OLST, and DF ROM within group (paired <i>t</i> test): Significant and clinically meaningful for either form of MT for: \uparrow in proprioception (OLST) eyes closed; both $P =$.000. Manipulation OLST \uparrow by 10.45 s and ME (mob + stretch) \uparrow by 10.05 s, the NRS at sixth visit; significant and clinically meaningful for a \downarrow in NRS, 101 for pain both >37 and 39.6 mm	Blinding: none Loss of 1 patient reported (not clear what was done with data) and replaced; otherwise, all who began trial ended trial in same groups All subjects who began completed treatment in same groups (except 1 subject, replaced, and data	

 Table I. (continued)

Author	Study type	Condition	Participants	Intervention/control	Results/outcomes	Particulars	Modified Liddle et al*
Hallux					respectively; also for \uparrow in ROM or DF 9.8° and 7.7° manipulation and mobilization (ME), respectively (see article for details)		
limitus/rigidus							
Shamus et al ¹⁴³	RCT^	Hallux limitus	n = 20 Mean age, 32.8	MT of hallux and or/hallux and sesamoids + different physical therapy protocols: Comparative Tx: modalities, hallux mob, exercise vs experimental Tx (same) + sesamoid mob, hallux flex strengthening, and gait retraining 12 Txs over 4 wk	Significant in favor of experimental Tx for: ↑ ROM, ↑ strength, ↓ VAS, faster return of ROM, and function	Single blind: Blind participants ITT adequate No drop outs 2 patients discharged at 10 visits (with relief)	+
HAV (or bunion)							
(or building)	RCT	HAV	n = 60	MT of hallux, foot and	Significant in favor for MT	Single blind	+
Brantingham et al ¹⁴⁶		(painful HAV)	Mean age, 50.1	ankle (with a progressive	for ↓ NRS, ↓pain, disability, ↑ function with HAL and FFI vs placebo	Drop outs not reported/unclear No reported side effects	

du Plessis et al ¹⁴⁷	RCT^	HAV (mild to moderate painful HAV—rule out severe deformity, RA, diabetes, etc)	n = 30 Age range, 25 -65 y Mean age, 42 y	first MTPJ), foot, and ankle joints (with a progressive protocol of mobilization to HVLA manipulation of the	Both groups had significant within-group change for VAS and FFI and DF ROM at the 1-wk FU, etc (see article). However, no significant between group differences (ANCOVA, $P > .05$) for all outcome measures at the end of care or the 1-wk FU. Significantly in favor (for between groups) for the MT group for a \downarrow in pain (VAS) and significant and clinically meaningful \downarrow in FFI and \uparrow ROM in DF of hallux at the 1-m FU. This suggests that the night splint regressed to the mean but the MT treatment effects persisted at the 1-mo FU.	1	++
------------------------------------	------	---	---	--	---	---	----

ADL, activities of daily living; *AFS*, ankle functional scale; *AIS*, ankle instability syndrome; *AKPS*, Anterior Knee Pain Scale; *ALG*, algometry; *ANCOVA*, analysis of covariance; *ANOVA*, analysis of variance; *A-P*, antero-posterior; *AQoL*, health-related quality of life measure; *ART*, active release therapy; *BBS*, Berg Balance Scale; *CMT*, chiropractic manipulative treatment; *CT* ¥, controlled or clinical trial with systematic assignment (pseudorandomization) or no randomization but with inclusion, exclusion, controlled, independent, and dependent variables vs placebo and/or comparative treatment; *DF*, dorsiflexion; *EMG*, electromyogram; *EPAX*, electrophysical agents and exercise; *ER*, emergency room; *ext*, extension; *FAAM*, foot and ankle ability measure; *FES*, functional evaluation scale; *FFI*, Foot Function Index; *FKC*, full kinetic chain; *flex*, flexion; *FU*, follow-up; *GROC*, Global Rating of Change; *HAL*, Hallux-Metatarsophalangeal-Interphalangeal Scale; *HAV*, hallux abducto valgus; *HHS*, Harris Hip Scale; *KJ*, knee joint; *KOA*, knee osteoarthritis; *KPS*, knee pain scale; *LEFS*, Lower Extremity Functional Scale; *L-M*, lateral-medial; *man*, manipulation; *MANOVA*, multivariate analysis of variance; *MCID*, minimal clinically important difference; *ME*, muscle energy; *meds*, medications; *MI*, muscle inhibition; *MIMG*, Macquarie Injury Management Group Knee Protocol; *MMP*, massage and mobilization protocol; *mob*, mobilization; *MFEX*, Numerical Rating Scale; *NSAID*, nonsteroidal anti-inflammatory drug; *OLST*, one-leg-standing test; *OMT*, osteopathic MT; *OTE*, Overall Effectiveness Scale; *P-A*, postero-anterior; *PF*, plantarflexion; *SFMPQ*, Pain Severity Questionnaire; *PGT*, patellar Grinding Test; *PIR*, postisometric relaxation; *PP*, placebo protocol; *PPT*, pressure pain threshold; *PSFS*, Patient Specific Function Scale; *PS*, Soft-Form McGill Pain Questjonnaire; *SFMPQ*, Short-Form McGill Pain Scale; *SI*, sacroiliac; *ST*, soft tissue; *Sx*, symptoms; *T*

§ RCT, randomized controlled trial (treatment vs placebo); RCT^, randomized clinical trial (treatment vs another treatment, usually comparative treatment demonstrated superior to placebo or standard care).

Condition	Treatment no.	Quality	Grade of evidence*
Hip OA	Average: 6 over 3-5 wk	2 high	B for MT of the hip combined with multimodal
	Range, 6-9	2 moderate	or exercise therapy for short-term relief
		2 low	C for intermediate and long-term relief
Knee OA	Average: 10 over 6 wk	2 high	B for MT of the knee and/or full kinetic chain
	Range, 1-24	6 moderate	combined with multimodal or exercise therapy
	1-y follow-up	1 low	for short-term relief
			C for intermediate and long-term relief
Patellofemoral pain syndrome,	Average: 6.37 over 4-8 wk	2 high	B for MT of the knee and/or full kinetic chain
also known as anterior knee	Range, 1-8	5 moderate	combined with multimodal or exercise therapy
pain syndrome	Range, 1 Tx to 1-y follow-up	2 low	for short-term relief
			C for intermediate and long-term relief
Ankle inversion sprain	Average: 3.25	1 high	B for MT for ankle sprain with multimodal or
	Range, 1-8 over 2-8 wk	10 moderate	exercise therapy for short-term relief
		2 low	C for intermediate relief
Plantar fasciitis (fasciopathy)/heel pain	Average: 7 over 5 wk	1 high	B for MT for plantar fasciitis with
		1 moderate	multimodal/exercise therapy for short-term
			relief C for intermediate relief
Metatarsalgia	Average: 7.5 over 3-4 wk	1 moderate	C for MT for metatarsalgia with and without
		1 poor	multimodal therapy
			No change, no new studies found
Decreased proprioception, balance, and	Average: 3.5	4 moderate	C for MT for improving ankle and foot
function from foot and ankle injury,	Range, 1-6		proprioception/balance with multimodal/exercise
decreased ROM, and/or joint dysfunction			therapy for short-term relief
Hallux limitus/rigidus	12 over 4 wk	1 moderate	C for MT for hallux limitus/rigidus with multimodal
			therapy for short-term relief; otherwise, no change
Hallux abducto valgus/bunion	Average: 5	2 moderate	I for MT for hallux abducto valgus for short-term relief

 Table 2. Level of evidence for MT

* Refer to Figure 2 for definitions.

observational, clinical, and basic science research, case series, and reports.

Discussion

This literature review revealed new, recent, and previously uncited (secondary to limitations previously discussed) peer-reviewed articles and publications regarding manipulative treatment. For the most part these studies included adjunctive therapy (frequently exercise and/or rehabilitation and soft tissue therapy, secondarily, in conjunction with modalities, NSAIDS, etc) for lower extremity conditions. Since the earlier reviews,^{1,2} along with broader inclusion parameters, there is a clear increase of fair and limited evidence for use of MT in the treatment of several common lower extremity disorders. Notably, within this new evidence, there exist several studies representing very high and higher level RCT evidence with SGPPDs, case studies, and reports of increasing quality continuing to proliferate. Also worth noting is that the highly and lesser rated trials included in this analysis have recently been included in systematic reviews for treatments of hip and knee OA, patellofemoral pain syndrome, and inversion sprain. 39,40,43,88 However, in this proliferation of competing, systematic reviews, using similar and/or a variety of methodologies, some reach opposite conclusions as to whether to support or not support the same treatment. One surprising example of just such a finding is exercise for acute inversion sprain. 39,89-91 Nevertheless, overall, when appraising the increasing quantity and quality of included trials, MT for lower extremity disorders appears to be of value and, like spinal MT, fundamentally safe. The trials and studies used numerous outcome measures, most with minimally general, and some with a condition-specific validity and reliability. Some of the measures used were primary patient reports of improvement (using Likert, overall therapy effectiveness, and other scales), and algometry, Visual Analog Scale, Numerical Pain Rating Scale, and the Short-form McGill Pain Questionnaire. In addition, Cybex isokinetic muscle testing; Goniometry; the Anterior Knee Pain Scale; Harris Hip Scale; the WOMAC; the Hallux Metatarsophalangeal Interphalangeal Index; the Foot Function Index; One Leg Standing Test; Interpolated Twitch and EMG; and functional tests such as "First Step Heel Pain," "Step-Ups," "Get Up and Go," Gait Analysis, Stabiliometry, and Baropodometry as well as orthopedic tests were used.

Intention-to-treat analysis can be a useful tool in interpreting study data. For example, when data from subjects who drop out of a study secondary to adverse effects are excluded, this certainly constitutes a potential bias in interpreting findings that would benefit from the addition of ITT. However, Hollis and Campbell⁸¹ point out that 52% of medical trials fail to do ITT or do a poor or an inadequate job with ITT. In a systematic review of 249 trials, Gravel et al⁸² pointed out that randomization was used only

Author	Diagnosis	Treatment/management	Reported outcome
MacDonald et al ⁹⁹	HOA n = 7 Median age, 62 y	MT of hip and exercise for (HOA) 5 treatments (over 2-5 wk) Mobilization and manipulation (grades IV and V) 1. HVLA axial elongation 2. Various additional hip manipulation and mobilization techniques from multiple sources/textbooks 3. Hip, knee, and trunk exercises for HOA	HHS (for disability)6 patients: median improvement \uparrow 25 points (clinically meaningful $[clm]$ change \uparrow 4 points).1 patient (no HHS scale) butinstead did Global Rating of ChangeScale: "a great deal better"7 patients mean NPRS \downarrow 5 pointson 0-10 scale; 1.5-2 points clm)Goniometry: Global \uparrow ROM 82°
Brantingham et al ¹⁰⁰	HOA SGPPD n = 18 Age range, 40-85 y Blind assessment: Assessors did not know which group these study and/or group in various HOA trials these subjects were in. Assessors did not know if they were receiving full kinetic chain or local hip Tx.	 9 Txs over 5 wk and a 3-mo FU Subjects received preadjustive stretches of the iliopsoas, rectus femoris, tensor fascia latae, sartorius, long adductors, and short adductors. Stretches were followed by a HVLA long-axis manipulation thrust or traction of the hip with a sudden HVLA "pull" on the involved hip. If it was determined that hip flexion was still restricted or not improved, then the HVLA hip manipulation was repeated after adding slight internal rotation and/or abduction to produce a more "close packed" hip joint position. Maximum no. of hip manipulations per treatment session allowed was 5. Postadjustive, active-assisted stretches were conducted such as hip flexion, hip adduction, or a piriformis stretch. No Tx or a formal home exercise program was prescribed after the 3-mo FU except general advice as to how to increase activities and exercise safely. Increased activity was encouraged. Valid and reliable outcome measures: OTE, WOMAC, and HHS (see next column) Plus ROM 	Conclusion: All \downarrow pain, \uparrow ROM Within-group clinical and statistically and clinically significant for the (Kolmogorov-Smirnov test for OTE and WOMAC demonstrated normally distributed data, also used χ^2 , paired <i>t</i> test, and Friedman ANOVA tests): OTE (a globally rated patient satisfaction and improvement outcome measure) χ^2 OTE at ninth Tx = \uparrow 85.2% improvement; <i>P</i> = .005 (MCID estimated at an \uparrow of 30%) OTE at 3-mo FU = \uparrow 77.8% improvement; <i>P</i> = .02 WOMAC (<i>t</i> test) WOMAC at ninth Tx = \uparrow 58.6% improvement; <i>P</i> = .000 (MCID estimated at an \uparrow of 20%-25%) WOMAC at 3-mo FU = \uparrow 50.1% improvement; <i>P</i> = .000 HHS HHS at ninth Tx = \uparrow 13.6 points improvement; <i>P</i> = .001 KOM The total increase in the global ROM was +11.89° (<i>P</i> < .05). ROM increased in flexion, extension, and internal rotation—significantly at the 3-m
Brantingham et al ¹⁰¹	HOA SGPPD n = 27 Age range, 40-85 y Age range, 40-85 y Blind assessment: Assessors did not know which group these study and/or group in various HOA trials these subjects were in. Assessors did not know if they were receiving full kinetic chain or local hip Tx.	 9 Txs/5 wk and a 3-mo FU Subjects received preadjustive stretches of the iliopsoas, rectus femoris, tensor fascia latae, sartorius, long adductors, and short adductors. Stretches were followed by a HVLA long-axis manipulation thrust or traction of the hip with a sudden HVLA "pull" on the involved hip. If it was determined that hip flexion was still restricted or not improved, then the HVLA hip manipulation was repeated after adding slight internal rotation and/or abduction to produce a more "close packed" hip joint position. Maximum no. of hip manipulations per treatment session allowed was 5. Postadjustive, active-assisted stretches were conducted such as hip flexion, 	FU (internal rotation +5.4°; $P = .037$). Within-group clinical and statistically and clinically significant for the (Kolmogorov-Smirnov test for OTE and WOMAC demonstrated normally distributed data, also used χ^2 , paired <i>t</i> test and Friedman ANOVA tests): <u>OTE (a globally rated patient satisfaction and improvement outcome measure)</u> χ^2 OTE at ninth Tx = \uparrow 83.3% improvement; $P = .005$ (MCID estimated at an \uparrow of 30%) OTE at 3-mo FU = \uparrow 78.0% improvement; $P = .02$. <u>WOMAC (<i>t</i> test)</u> WOMAC at ninth Tx = \uparrow 63.9% improvement; $P = .000$ (MCID estimated at an \uparrow of 20%-25%) WOMAC at 3-mo FU = \uparrow 47.0%

hip adduction, or a

Table 3. A summary of research on the hip: case series and SGPPDs

(continued on next page)

improvement; P = .016

Table 3. (continued)

Author	Diagnosis	Treatment/management	Reported outcome
		piriformis stretch. No Tx or a formal home exercise program was prescribed after the 3-mo FU except general advice as to how to increase activities and exercise safely. Increased activity was encouraged. Valid and reliable outcome measures: OTE, WOMAC, and HHS (see next column) Plus ROM	HHS HHS at ninth $Tx = \uparrow 12.2$ points improvement; $P = .001$ (MCID estimated at an \uparrow of 4 points)HHS at 3-mo FU = $\uparrow 11.8$ points improvement; $P = .007$ Global overall ROM increased 23.58°.Flexion, extension, and internal rotation all increased significantly at the 3-mo FU; all $P \leq .05$ significantly at the 3-mo FU.This was supported by Friedman
de Luca et al ¹⁰²	HOA Case series n = 4 HOA n = 4 Average age, 59.5 y (SD, ±6.7)	 9 Txs/5 wk Each subject received preadjustive stretches of the iliopsoas, rectus femoris, tensor fascia latae, sartorius, long adductors, and short adductors. Stretches were followed by HVLA long-axis hip thrust (or traction with a sudden pull) of the involved hip. The hip manipulation was repeated up to a maximum of 5 times (after adding slight internal rotation and/or abduction to make a more closed packed hip joint position) if flexion ROM was still restricted or not improved. Postadjustive, active-assisted stretches were conducted in hip flexion, hip adduction, piriformis stretch, and/or the Patrick-Fabere position. No Tx or a formal home exercise program was prescribed except general advice to safely increase activities and exercise. Increased activity was encouraged. Outcome measure: a valid and reliable measure: WOMAC Secondary outcome measure: ROM Adverse events: none. Side effects: mild posttreatment soreness after the first 1-2 	ANOVA; $P = .008$. <u>WOMAC</u> WOMAC at ninth Tx = average improvement of overall 69% \downarrow in WOMAC scores for the 4 cases (of 2400 mm maximum worst). A mean group reduction of 382.5 mm (SD, ±115.8) All 4 subjects also had large decreases in hip pain, disability, and stiffness as well as an overall increase of 15° \uparrow in flexion; all appear to be greater than a minimally clinical important change (see de Luca et al 2010 article). In addition, there was a mean group \uparrow in hip ROM: internal rotation (51.7%; mean, 7.3°; SD, ±6.2°), adduction (26.7%; mean, 5.3°; SD, ±5.0°), abduction (21.1%; mean, 6.8°; SD, ±5.4°), flexion (15.3%; mean, 15°; SD, ±4.8°), and external rotation (8.5%; mean, 8.5°; SD, ±6.0°).

HOA, hip OA.

77% of the time; ITT, only 23% of the time, with ITT in general done poorly, incorrectly, or unclearly explained. whereas Furlan et al,⁸⁵ in a massive meta-analysis of RCTs assessing chronic low back pain, found only 34.7% with adequate ITT, whereas Rubenstein et al⁸⁶ found serious ITT deficiencies in 73% (19/26) of RCTs assessed in a 2011 meta-analyses. Porta et al⁸³ caution that ITT or per protocol analysis (PP) is so often flawed and flawed to such an extent that it is wrong to base conclusions of a controlled trial on single report of either ITT or the PP approach alone. Baron et al⁸⁴ found that, of 54 trials, full ITT analysis was done correctly in these studies only 7.4% of the time. Furthermore, most diagnoses and their respective treatments or management even now have no RCTs undergirding them (nor ITT analysis) to guide practitioners, and diagnosis and management are still determined by expert

consensus.^{60,64,92,93} Consequently, in this review, absence of ITT resulted in modification of ranking and a lower rating of the study rather than exclusion.

The literature suggests vigorous and sustained interest in the application of peripheral or extremity MT for lower extremity conditions; the effectiveness of MT procedures, particularly in conjunction with rehabilitation (such as exercise therapy and advice) for some common lower extremity disorders, is cautiously supported by this review; questions of effectiveness, especially cost-effectiveness, need to be undertaken.⁹⁴⁻⁹⁶

This review cites earlier^{1,2} but new or previously undetected MT studies for hip OA and disorders,^{23,97-104} knee OA and disorders,¹⁰⁵⁻¹¹³ patellofemoral pain syndrome,¹¹⁴⁻¹²² ankle sprain disorders,^{69,123-135} plantar fasciitis and/or heel pain,^{133,136-139} metatarsalgia,¹⁴⁰ Morton

Author	Diagnosis	Treatment/management	Reported outcome
Cliborne et al ¹¹⁰	КОА	MT of hip	NPRS ↓ and all clinical tests
	n = 22 with KOA (mean age, 61 y)	1 treatment, immediate posttest	less painful (except hip flexion)
	n = 17 normal and asymptomatic	1 group intragroup pre-post test	in mobilization group posttest; $P < .05$
	(age, 64 y)	Hip mobilization grades III and	All clinical tests more + in patients
	Does hip mobilization \downarrow pain and	IV Maitland techniques	with KOA compared with normal
	↑ ROM in KOA.	1	asymptomatic
	What hip tests, etc $+$ in both groups		and less painful in symptomatic
	(Faber, hip ROM, Scour test, etc)		posttest, except Faber
Currier et al ¹¹¹	KOA	MT of hip + exercise	Global Rating of Change Scale \uparrow 3.27
currer et ur	n = 60 (51-79 y)	4 treatments	points (clinically meaningful)
	CPR study to determine patients	Immediate and 48-h posttest.	NPRS, WOMAC, PSFS posttest
	with KOA who respond to hip	1 group intragroup pre-post test	intragroup changes, all statistically
	mob and validity of tests	Maitland mobilizations grade IV	and clinically meaningful; $P < .05$
	to predict outcome.	Maitland techniques	CPR in symptomatic KOA
	5 variables:	Waitiand teeninques	If +2 CPRs 97% at 48-h follow-up
			*
	1. Hip/groin pain or paresthesia		(LR, 5.1)
	2. Anterior thigh pain		If +1 CPR 68% at 48 h
	3. Knee flexion <122°		Conclusion: CPR may improve
	4. Hip internal rotation <17°		examination and treatment of KOA.
D 1 4 112	5. Pain with hip distraction		
Bozkurt et al ¹¹²	Nonspecific diagnosis of lateral	Manipulation of the proximal	Follow-up at 12-36 mo (mean, 28 mo)
	knee pain secondary to PTFJ	tibiofibular joint	after treatment protocol
	as evaluated with specific	Strengthening and stretching of	28/38 knees reported complete
	radiographs and MRI including	local muscles.	resolution of symptoms at follow-up.
	degenerative changes, effusion		No change in 5 patients
	and local tendon pathology		Poor description of treatment protocol
	(biceps), and ligamentous		Conclusion: PTFJ pathologies should
	pathology LCL		be kept in mind in the evaluation of
	n = 32 (38 knees)		patients with lateral knee pain.
	Mean age, 27.2 y		MRI examination provides useful
			information.
Brantingham et al ¹¹³	Meniscus tear	Diversified MT of the knee-Genu	4/5 patients reported a reduction in
	Confirmed with MRI in 4 patients	circumduction extension mobilization	VAS with an increase in knee ROM
	n = 5	High-velocity, low-amplitude	1 patient reported worsening of
	Case series study to determine	thrust-axial elongation thrust	symptoms
	the effectiveness of MT and	Exercises: isometric quadriceps	LEFS improvement in 3 patients
	exercises management on 5	setting, isotonic knee extension, and	Orthopedic tests specific for meniscus
	patients with a clinical diagnosis	shallow eccentric bilateral squats.	lesions less painful
	of meniscus lesion	Case series	1-mo follow-up
	Rx frequency ≤ 6		Conclusion: This case series reports or
			chiropractic treatment of meniscal
			injury using traditional diversified
			MT and rehabilitative exercise.
			Chiropractic care appeared helpful
			in 4 of 5 patients.
Iverson et al ¹²²	PFPS	Supine lumbopelvic manipulation	At baseline, NPRS was used to
	n = 50	to the symptomatic side	establish pain levels after each
	Mean age, 24.5 y	to the symptomate side	functional test
	Prospective cohort predictive validity		Global rating of change pain
	study to determine which patients		questionnaire
	with a diagnosis of PFPS have a		Procedure was considered successful
	positive and immediate response to		in 22 (45%) of subjects
	1		
	lumbopelvic manipulation		Mean NPRS improvement in the
	Rx frequency: 1 visit		success group was $80\% \pm 17\%$,
	Each subject performed 3 typically		Clinical prediction rule for success
	pain producing functional activities		Side-to-side difference in internal
	and were immediately given a		rotation >14°
	lumbopelvic manipulation.		Ankle dorsiflexion knee flexed >16°
	Treatment success was considered if		Navicular drop >3 mm
	there was a >50% reduction in pain		No self-reported stiffness with sitting
	levels on a global rating of change		>20 min

Table 4. A summary of research on the knee: case series

 Table 4. (continued)

Author	Diagnosis	Treatment/management	Reported outcome
			Squatting reported as most painful activity Conclusion: A CPR was developed to predict an immediate successful response to lumbopelvic manipulation in patients with PFPS. The most robust predictor of success to spinal manipulation being in
			patients with PFPS being a side-to-side difference in hip internal rotation ROM of >14°. The clinical prediction rule developed in this study may help clinicians identify patients with PFPS who will respond successfully to lumbopelvic manipulation

CPR, Clinical Prediction Rule; *KOA*, knee OA; *LCL*, lateral collateral ligament; *LEFS*, Lower Extremity Functional Scale; *MRI*, magnetic resonance imaging; *NPRS*, Numerical Pain Rating Scale; *PFPS*, patellofemoral pain syndrome; *PSFS*, Patient Specific Function Scale; *PTFJ*, proximal tibiofibular pathology; *Rx*, prescription or prescribed treatment.

metatarsalgia/neuroma, ^{141,142} hallux rigidus/limitus, ^{69,143-145} and hallux valgus. ^{146,147} A new and expanding category has been added in this review: (*a*) decreased proprioception, balance, and function from foot and/or ankle injury or from decreased range of motion (ROM), myofascial, and/or joint dysfunction and injuries. ^{126-128,148-150} These investigations included single-group pretest-posttest studies, case series, and reports for assessing hip MT (with exercise) for hip OA, knee MT for hip OA, and the effect of hip MT for knee OA. Also reported on were ankle and/or foot MT for treatment of ankle equinus, metatarsalgia, Achilles tendonitis, plantar fasciitis, Morton metatarsalgia, and hallux manipulation and injection for treatment of hallux rigidus, foot and ankle MT for "cuboid syndrome" secondary to lateral ankle sprains, and other and various additional case reports demonstrating the momentum, growing interest, and publication in this area.

In effect, the present studies of MT for lower extremity disorders appear to parallel the results and overall beneficial outcomes per spinal research. 151,152 However, in an attempt to be clearer in regard to what is known and unknown and to increase accuracy in prognosis, split levels of evidence have been used for the first time. For example, in this study, MT for hip OA was given a level of B or fair evidence for MT combined with multimodal or exercise therapy in the short term and a level of C or limited evidence for MT combined with multimodal or exercise therapy in long-term treatment for hip OA. Although it will be useful to thoroughly investigate the most effective methods of manipulation/ mobilization for each and every joint in the human body, at this point, based upon the combined level of evidence of the benefit of mobilization/manipulation for the axial and appendicular system as well as safety, one could tentatively posit that, in the presence of mechanical joint dysfunction and other applicable signs and symptoms,

joint mobilization/manipulation appears to be universally indicated as a therapeutic trial, in combination with other reasonable evidence-influenced conservative approaches, for all joint conditions, particularly where joint hypomobility is suspected as contributory. Common indications for the use of a MT (characterized by various definitions such as joint dysfunction, subluxation, or as a result of decreased function particularly with associated stiffness and pain and/or per a clinical prediction rule) are (1) diagnosis of a painful neuromusculoskeletal joint disorder, (2) pain in or from palpation of bony joint surfaces, (3) pain in or from palpation of joint soft tissues, (4) decreased or altered range or quality of motion, (5) pain on stressing and/or overstressing/overprovoking (in any or all planes) a joint.^{3,111-153}

When a single treatment (mobilization of the hallux for hallux rigidus) produces relief for months, it would seem reasonable that additional MT extremity treatments may give a longer period of relief, and as needed (occasional "maintenance"), treatment may, for some select patients, continue to give a higher level of relief.^{143,152,153} Treatment dosage, use of "as-needed or maintenance care" to sustain higher benefits from the initial treatments, and related cost-effectiveness issues for MT for lower extremity disorders (as for spinal disorders) remain unresolved and issues that must be addressed in future research.^{86,154-156}

Although DCs are highly trained in and most known for the application of HVLA thrusting techniques, the profession has also incorporated low-velocity, high- or lowamplitude mobilization techniques throughout the last century. This is well characterized by the myriad of mobilization techniques used within the profession and represented by these studies.^{1,3,9,140,157,158} As noted, most MT applied to extremity disorders is delivered as multimodal therapy, blending exercise, soft tissue treatment, modalities,

Author	Diagnosis	Treatment/management	Reported outcome
Dananberg et al ¹³³	Ankle equinus (decrease abnormal loss of ankle dorsiflexion ROM ↓ <10° from neutral) Give examples of secondary diagnoses associated with ankle equinus and helped in case series: a. plantar fasciitis b. acute chronic ankle sprain strain c. Achilles tendonitis d. neuroma e. metatarsalgia	MT + exercise (1 treatment manipulation and mobilization) n = 22 1 group immediate pre-post test 1. P-A HVLA manipulation to proximal fibular head 2. Traction (mob) of ankle/mortice in axial elongation followed by HVLA A-P talar thrust 3. Then active dorsi and plantarflexion ROM movement	Gravity goniometer strapped on and used only by patient: active ROM, patient pulling strap under foot, etc. Mean \uparrow ankle dorsiflexion ROM 4.9° (left), 5.5° (right) <i>t</i> tests at 99% confidence level; <i>P</i> < .001 Reports soreness in some ≤ 2 d but none later States better than stretch alone
Dananberg ⁶⁹	 Ankle equinus With: 1. Inversion sprain, chronic (and had big toe pain too) 2. Kohlers (osteochodrosis of the navicular with pain) 3. Hallux limitus (first MTPJ stiffness and pain) All patients had ankle equinus + additional diagnosis. 	of ankle by patient MT combined with various treatments per condition: RICE, taping, exercise (inversion sprain), casting (Kohlers) orthotics (hallux limitus) n = 3 1. P-A HVLA manipulation to proximal fibular head 2. Traction (mob) of ankle/mortice in axial elongation followed by HVLA A-P talar thrust 3. Manipulation of the first metatarsocuneiform joint for first MTPJ for big toe pain.	 3-wk follow-up for all. Descriptive outcomes. Ankle sprain (and big toe pain) 1 treatment resolved condition. ↑ ROM Kohler 's disease—a few treatments: quickly resolved navicular pain. Antalgia resolved. Hallux limitus. A few treatments ↓ pain ↑ ROM of big toe.
Jennings and Davies ⁷⁰	Cuboid syndrome: unresolved lateral ankle/cuboid pain n = 7; mean age, 21.1 y a. Second to inversion ankle sprain All college athletes and/or sports injuries	MTP for big toe pain. MT—HVLA "cuboid-whip" manipulation Different patients received various different additional treatments: tape, stretching, orthotics, cuboid pad, and modalities. 5 patients had 1 manipulation 2 patients had 2 manipulations	VAS before and after (pre average VAS, 2.85, and posttreatment VAS, 0) Improvements post-Tx: also in ↓ cuboid tenderness, MTJ mobility, antalgic gait, and in ability to do single hop

Table 5. A summary of research on the ankle: case series

or multiple extremity joint and/or combined spinal and extremity joint MT (treatment of the kinetic chain), either condition and/or patient specific. ^{1,21,73,101,102,155,156} In fact, it would appear that MT with stretch may be superior to either therapy alone in common extremity disorders for increasing ROM. ^{21,27,159,160}

Limitations

One limitation that is clear from this study is that most lower extremity MT studies assess only short-term treatment outcomes for 3 months or less. This is because most clinical studies are designed/powered to reach the point where a clinically significant difference might first be detected and are not funded generally, to evaluate the maximum period or extent of the benefit. However, more intermediate extremity studies less than 6 months are beginning to be conducted, but long-term studies greater than 6 months are still rare.^{21,23,94} As a result, strong assertions about intermediate or long-term outcomes must not be made; however, this is not different from most medical care or usual care, no matter the provider. Thus, there is a need to carry out more, larger, long-term, and methodologically stronger MT trials that also include a cost-effectiveness component.^{60,161,162} Another limitation

of this systematic review is that, as with all systematic reviews, some studies may have potentially been missed or were omitted for a priori reasons. For example, a study would have been missed if it did not contain the included search terms or key words or was simply not contained within the applicable/normative databases. Studies without a peripheral diagnosis (eg, measuring ROM), RCTs using immediate rehabilitative postsurgical MT of an extremity, conference proceedings, red flag conditions, or conditions that required referral were excluded. 1,163,164 Unfortunately, this means that interesting and informative studies such as an RCT of osteopathic manipulative treatment immediately after knee and/or hip arthroplasty and an RCT of chiropractic MT just before hip arthroplasty manipulative management of foot pain due to an os peroneum and accessory navicular, spinal MT for a hamstring injury (without clear peripheral injury and diagnosis) and chiropractic management of injuries sustained during Brazilian capoeira (art that fuses dance, sport, and martial arts) were unfortunately not included. 71,125-167 Arguably, the RCT of Thorman et al¹⁶⁷ demonstrating statistically significant pain relief and functional improvement for patients with hip OA awaiting arthroplasty and information and data from other studies should have been

Solan et al ¹⁴⁴	Hallux rigidus grades I-III (refers to x-ray findings) n = 37 Mean age, 52.3 y 2 lost to FU 1-y FU, 29 available	 1 manipulation under anesthesia with steroid injection of the first MTPJ. 1 manipulation of hallux (manipulative technique not fully described) 1-y FU. No additional treatment: additional manipulation, exercise, stretch, medication, etc. 	Relief was defined as period free of symptoms, pain and stiffness on walking/using foot and in activities of daily living/function and or making a decision to have surgery. Grade I, 6 mo of relief Grade II, 3 mo of relief Grade III, minimal to no relief. 12 grade I, 4 went to surgery 18 grade II, 12 went to surgery 5 grade 3, all 3 went to surgery Conclusion: manipulation is acceptable for grade I, limited for grade II, and not indicated for
Whitman et al ¹³⁴	Prospective cohort study Inversion lateral ankle sprain n = 85 Mean age, 32 y 2 Rx sessions	Treatment session 1 Thrust manipulation of the rear foot and proximal P-A tibiofibular Nonthrust manipulation A-P talocrural, lateral glide/eversion rear foot technique, and distal tibiofibular technique ROM exercises Treatment session 2 Same techniques at discretion of therapist if there was nonsuccess as perceived by the participant after the first treatment session SGPPD	grade III. Outcome variables NPRS (4 at baseline to 1.2) FAAM (33.7-62.1) LEFS (476-676) GROC Participants were deemed as a success to therapy if on the GROC, they rated their recovery as "a very great deal better" or "great deal better" Total success, $n = 64$ Conclusion: The authors have developed a clinical prediction rule to identify patients with a status of postinversion ankle sprain most likely to benefit rapidly and dramatically from manual therapy and general exercise. All patients reported improvement in their NPRS when compared with baseline, ROM, and subjective patient self-reported functional status Conclusion: A manual physical therapy emonstrated complete pain relief and return to full activities in
Young et al ¹³⁹	Plantar heel pain, plantar fasciitis n = 4 Rx frequency, average 2-7 sessions over 8-49 d	Manual physical therapy including talocrural, subtalar mobilization and manipulation, stretches of the gastronomies, soleus muscle, and plantar fascia 1 patient received additional strengthening exercises 2 patients received custom orthotics	4 patients.
Wyatt ⁷¹	Plantar fasciitis (recalcitrant lateral plantar pain, after fasciotomy—referred by podiatric surgeon for chiropractic after full postsurgical healing and 4-6 weeks of NSAIDS, shoe padding, and rest) 15 patients Mean age, 46.4 y None lost to FU	MT + multimodal a. Manipulation and mobilization of the ankle and foot (including HVLA plantar to dorsal "snap or whip" manipulation). b. Exercise and change or ↓ activity c. 1 Tx/wk for 2-8 visits over 2-8 wk.	Verbal Rating Scale (0-100) Most experienced quick relief 11 experienced significant or 90% relief on Verbal Rating Scale 3 moderate relief (50%-90%) 1 no change 9 had minor side effects to MT, which resolved.

Table 6. A summary of research on the ankle and foot: case series

included.^{149,150} Future reviewers may want to consider including these studies and immediate or presurgical and/or postsurgical rehabilitative MT management.

Future Research

Further research is needed to include larger trials with improved methodology. Funding is needed for RCTs as

Author	Diagnosis	Treatment/management	Reported outcome
Whipple et al ¹⁰³	 Acetabular anterosuperior labral tear Instability (↑ ext. rot.) Nonspecific hip pain Patient: 14-year-old ballet dancer with symptoms for 1 mo A. overstretch. B. weight-bearing flexed/extended twist of hip dancing C. painful click with abduction 	MT 1 treatment 1. Cyriax technique (variation on technique for loose bodies): a. Axial elongation traction of the hip with b. 5 mobilizations from 30°-75° abduction	Began VAS 7/10 with pain abducting when dancing. After treatment, VAS 0/10 with abduction a. no pain on scour test b. ↑ external rotation persisted 1-wk follow-up, no symptoms 6-mo follow-up—1 incidence of "giving way"; otherwise, no symptoms 1 visit
Pollard et al ¹⁰⁴	 Acetabular anterosuperior labral tear (arthroscopically confirmed) patients 45-year-old woman, prolonged housecleaning 3 wk earlier (with 10 y of chronic mechanical LBP). 15-year-old swimmer with 3 wk of knee and groin pain 	MT and mobilization (using multimodal and "MIMG" protocol, see article) Patient 1, 10 visits/2 mo Patient 2, 14 visits/2 1/2 mo a. hip long-axis traction with HVLA variations b. other hip manipulations and mobilizations c. PNF, exercise, SMT, knee MT, and activity modifications	Patient 1, ↓ hip pain 70%. Some pain with weight bearing and rotation of hip ↓ CMLBP 80%-90% Patient 2, initially ↓ hip pain 30%, at 3- and 6-mo follow-up, 0% (no) hip pain. Painless click Hip ROM still partially ↓ Surgical consult—but surgeon recommends against at this time. 10-14 visits
Costa and Dyson et al ¹³⁸	Plantar fasciitis Patient: 15-year-old girl. Soccer injuryknee, and groin pain. Symptoms for 1 y even after treated by GP and podiatrist, minimal help.	MT + multimodal therapy: a. manipulation and mobilization b. iontophoresis (acetic acid), orthotics, ice, tape, myofascial, exercise, stretch, and activity changes and therapy, etc. 3×/wk for 2 wk the 2×/wk for 2 wk or 10 total treatments	Treatment began VAS 7/10 morning pain and 4/10 usual pain all day After 6 weeks of treatment, resolution of symptoms 0/10 10 visits
Brantingham et al ¹⁴⁵	Hallux rigidus (grade I) 1 patient 31-year-old male professional golfer Big toe pain and stiffness for 7 mo.	MT + multimodal therapy: (all grades I-V) a. Hallux b. ankle/foot c. sesamoid mobilization and manipulation d. exercise therapy and stretching e. ultrasound Quick relief after a few Txs 17 visits/10 mo	NPRS 6/10 Lower extremity functional index, 22% (0-100, 100 worst) Hallux dorsiflexion ROM, 45° Final visit NPRS 1-2/10 Lower extremity functional index, 2% Hallux dorsiflexion ROM 84°
Cashley ¹⁴²	Plantar digital neuritis (Morton metatarsalgia) aka Morton neuroma 2 patients Patient 1, 25 years old; symptoms 3 mo after soccer. Patient 2, 63 years old; 1-y symptoms, steroid injections/orthotics with minimal relief.	MT Patient 1, 4 Txs plantarflexion HVLA manipulation at the MTPJs Patient 2, 3 Txs over 6 wk	Descriptive Patient 1 pain free by 4 wk. Follow-up at 14 mo, still pain and symptom free Patient 2, pain free after 3 treatments. Follow-up at 8 mo, still pain and symptom free

Table 7. A summary of research on the hip/foot: case reports

GP, general practitioner; LBP, low back pain; PNF, proprioreceptive neuromuscular facilitation; SMT, spinal manipulative therapy.

well as observational, clinical, and basic science research, case series, and reports. Interdisciplinary collaboration should certainly be encouraged and supported as well. Finally, the overarching observation, borne out of this body of research, of similarity of indications for and beneficial effect/responsiveness of patients to manipulative therapies for joint conditions throughout the human body¹³⁵ merits greater recognition and further support across professional, health delivery, research, and policy stakeholders.

Conclusion

There is a level of B (fair evidence) for MT combined with multimodal or exercise therapy for short-term treatment of hip OA and a level of C (limited evidence) for MT combined with multimodal or exercise therapy for long-term treatment of hip OA. There is a level of B for MT of the knee and/or full kinetic chain and of the ankle and/or foot, combined with multimodal or exercise therapy for short-term treatment of knee OA, patellofemoral pain syndrome, and ankle inversion sprain and a level of C for MT of the knee and/or full kinetic chain and of the ankle and/or foot, combined with multimodal or exercise therapy for long-term treatment of knee OA, patellofemoral pain syndrome, and ankle inversion sprain. There is also a level of B for MT of the ankle and/or foot combined with multimodal or exercise therapy for short-term treatment of plantar fasciitis but a level of C for MT of the ankle and/or foot combined with multimodal or exercise therapy for short-term treatment of plantar fasciitis but a level of C for MT of the ankle and/or foot combined with multimodal or exercise therapy for short-term treatment of metatarsalgia and hallux limit-us/rigidus and (for a new category) for loss of foot and/or ankle proprioception and balance. Finally, there is also a level of I (insufficient evidence) for MT of the ankle and/or foot combined with multimodal or exercise therapy for short-term treatment of plantar.

Practical Applications

- The purpose of this study is to expand upon a systematic review, documenting the quality, quantity, and type of research conducted on MT for lower extremity conditions.
- In addition to the previous citations used in a 2009 systematic review, an additional 399 citations were accessed.
- Level of evidence was found to range from B to I for the hip through the foot.

Funding Sources and Potential Conflicts of Interest

No funding sources or conflicts of interest were reported for this study.

References

- 1. Hoskins W, McHardy A, Pollard H, Windsham R, Onley R. Chiropractic treatment of lower extremity conditions: a literature review. J Manipulative Physiol Ther 2006;29: 658-71.
- Brantingham JW, Globe G, Pollard H, Hicks M, Korporaal C, Hoskins W. Manipulative therapy of lower extremity conditions: expansion of a literature review. J Manipulative Physiol Ther 2009;32:53-7.
- Peterson DH, Bergmann TF. Chiropractic technique: principles and procedures. 2nd ed. St. Louis, MO: Mosby; 2002. p. 39-501.
- Christensen M, Kollasch M, Ward R, Kelly R, Day A, zumBrunnen J. Job analysis of chiropractic 2005. Greeley, CO: National Board of Chiropractic Examiners; 2005. p. 105.
- Nelson C, Lawrence D, Triano J, et al. Chiropractic as spine care: a model for the profession. Chiropr Osteopat 2005;13:9.
- 6. Finn AM, MacAirt J. A survey of the work practices of physiotherapists in the community. Ir J Med Sci 1994;163: 61-4.
- 7. Cherkin DC, Deyo RA, Sherman KJ, et al. Characteristics of visits to licensed acupuncturists, chiropractors, massage

therapists, and naturopathic physicians. J Am Board Fam Pract Nov- 2002;15:463-72.

- 8. Brantingham JW, Snyder WR. Old Dad Chiro and extravertebral manipulation. Chiropr Hist 1992;12:8-9.
- 9. Wardwell W. Chiropractic history and the evolution of a new profession. St. Louis, MO: Mosby; 1992. p. 50-90.
- Keating J, Brantingham J, Donahue J, Brown R, Toomey W. A brief history of manipulative foot care in America. Chiropr Techn 1992;4:90-103.
- 11. Barnes P, Powell-Griner E, McFann K, Nahin R. Complementary and alternative medicine use among adults: United States, 2002. Adv Data 2004;27:1-19.
- 12. Pollard H, Hoskins W, McHardy A, et al. Australian chiropractic sports medicine: half way there or living on a prayer? Chiropr Osteopat 2007;15:14.
- Metz RD, Nelson CF, LaBrot T, Pelletier KR. Chiropractic care: is it substitution care or add-on care in corporate medical plans? J Occup Environ Med 2004;46:847-55.
- Brantingham J. Foundational studies in manipulative therapy for lower extremity neuromusculoskeletal disorders [PhD dissertation]. European Institute of Health and Medical Sciences, University of Surrey, Guildford, England; 2005.
- Mootz R, Cherkin D, Odegard C, Eisenberg D, Barassi J, Deyo R. Characteristics of chiropractic practitioners, patients, and encounters in Massachusetts and Arizona. J Manipulative Physiol Ther 2005;28:645-53.
- Cherkin D, Deyo R, Sherman K, et al. Characteristics of visits to licensed acupuncturists, chiropractors, massage therapists, and naturopathic physicians. J Am Board Fam Pract 2002;15:463-72.
- 17. Martinez DA, Rupert RL, Ndetan HT. A demographic and epidemiological study of a Mexican chiropractic college public clinic. Chiropr Osteopat 2009;17:4.
- Till AG, Till H. Integration of chiropractic education into a hospital setting: a South African experience. J Manipulative Physiol Ther 2000;23:130-3.
- Brantingham JW, Cassa TK, Bonnefin D, et al. Manipulative therapy for shoulder pain and disorders: expansion of a systematic review. J Manipulative Physiol Ther 2011;34: 314-46.
- 20. Kandhai S. A retrospective cross sectional survey of extremity cases on record at the Durban University of Technology Chiropractic Day Clinic (1995-2005). M.Tech: Chiropractic dissertation. Durban, South Africa, Durban University of Technology; 2007.
- 21. Hoeksma HL, Dekker J, Ronday HK, et al. Comparison of manual therapy and exercise therapy in osteoarthritis of the hip: a randomized clinical trial. J Rheumatol 2004;51: 722-9.
- 22. van Baar ME, Dekker J, Oostendorp RA, et al. The effectiveness of exercise therapy in patients with osteoarthritis of the hip or knee: a randomized clinical trial. J Rheumatol 1998;25:2432-9.
- 23. Brantingham JW, Smith Parkin, Cassa T, et al. Full kinetic chain manual and manipulative therapy plus exercise compared with targeted manual and manipulative therapy plus exercise for symptomatic osteoarthritis of the hip—a randomized clinical trial. Arch Phys Med Rehabil 2012;93:259-67.
- 24. Palmer B, Palmer D. The science of chiropractic. Davenport: Palmer School of Chiropractic; 1906.
- 25. Palmer D. The chiropractors adjustor. Portland: Portland Publishing; 1910.
- 26. Vaux P. Hip osteoarthritis: a chiropractic approach. Euro J Chiropr 1998;46:17-22.

- 27. Brantingham J, Williams A, Parkin-Smith G, Weston P, Wood T. A controlled, prospective pilot study into the possible effects of chiropractic manipulation in the treatment of osteoarthritis of the hip. Euro J Chiropr 2003;51: 149-66.
- Brantingham J, Snyder W. Did osteopathy "borrow" the chiropractic short lever adjustment (the core of all modern manipulation techniques) without giving Palmer credit? Chiro Hist 1997;17:41-50.
- 29. Cyriax J. Textbook of orthopaedic medicine. 2nd ed. Baltimore: Williams and Wilkins Co.; 1975.
- Grieve G. Common vertebral joint problems. 2nd ed. Edinburgh, Scotland: Churchill-Livingston; 1988.
- Moseley J, O'Malley K, Petersen N, et al. A controlled trial of arthroscopic surgery for osteoarthritis of the knee. N Engl J Med 2002;347:81-8.
- Lauretti W. Comparative safety of chiropractic. In: Redwood D, Cleveland C, editors. Fundamentals of chiropractic. Louis, MI: Mosby; 2003. p. 581-8.
- McGettigan P, Henry D. Cardiovascular risk and inhibition of cyclooxygenase: a systematic review of the observational studies of selective and nonselective inhibitors of cyclooxygenase 2. JAMA 2006;296:1633-44.
- 34. Bennell KL, Hinman RS, Metcalf BR, et al. Efficacy of physiotherapy management of knee joint osteoarthritis: a randomised, double blind, placebo controlled trial. Ann Rheum Dis 2005;64:906-12.
- 35. Menz H. Manipulative therapy of the foot and ankle: science or mesmerism? The Foot 1998;8:68-74.
- Brantingham JW, Cassa TK, Bonnefin D, et al. Manipulative therapy for shoulder pain and disorders: expansion of a systematic review. J Manipulative Physiol Ther 2011; 34:314-46.
- 37. Guler-Uysal F, Kozanoglu E. Comparison of the early response to two methods of rehabilitation in adhesive capsulitis. Swiss Med Wkly 2004;134:353-8.
- Eisenhart AW, Gaeta TJ, Yens DP. Osteopathic manipulative treatment in the emergency department for patients with acute ankle injuries. J Am Osteopath Assoc 2003;103:417-21.
- 39. van der Wees P, Lenssen AF, Hendriks EJ, Stomp DJ, Dekker J, de Bie RA. Effectiveness of exercise therapy and manual mobilisation in ankle sprain and functional instability: a systematic review. Aust J Physiother 2006;52:27-37.
- 40. Bronfort G, Haas M, Evans R, Leiniger B, Triano J. Effectiveness of manual therapies: the UK evidence report. Chiropr Osteopat 2010;18:1-112.
- 41. Cyriax J. Illustrated manual of orthopedic medicine. 2nd ed. London: Butterworth-Heinemann Medical; 1996.
- 42. Bergmann T. Extraspinal techniques. In: Bergmann T, Peterson DH, Lawrence DL, editors. Chiropractic prinicples and procedures. New York: Churchill Livingstone; 1993. p. 523-722.
- 43. Zhang W, Moskowitz R, Nuki G, et al. OARSI recommendations for the management of hip and knee osteoarthritis, part II: OARSI evidence-based, expert consensus guidelines. Osteoarthritis and Cartilage 2008;16:137-62.
- 44. Hawk C, Khorsan R, Lisi AJ, Ferrance RJ, Evans MW. Chiropractic care for nonmusculoskeletal conditions: a systematic review with implications for whole systems research. J Altern Complement Med 2007;13:491-512.
- 45. Cable G. Enhancing causal interpretations of quality improvement interventions. Qual Health Care 2001;10: 179-86.
- 46. Liddle J, Williamson M, Irwig L. Method for evaluating research and guideline evidence (MERGE). Sydney: New South Wales Department of Health; 1996.

- 47. Scottish Intercollegiate Guidelines Network. A guideline developers' handbook. Edinburgh: SIGN; 2001.
- Harbour R, Miller J. A new system for grading recommendations in evidence based guidelines. Br Med J 2001;323: 334-6.
- 49. United States Department of Health and Human Services, Agency for Health Care Policy and Research. Acute pain management: operative or medical procedures and trauma. Rockville, MD: AHCPR; 1993. p. 107. [Clinical practice guideline No 1, AHCPR publication No 920023].
- 50. Haldeman S, Chapman-Smith D, Petersen D. Guidelines for chiropractic quality assurance and practice parameters. Paper presented at: proceedings of a consensus conference commissioned by the Congress of Chiropractic State Associations; Mercy Conference Center. Gaithersburg, MD: Aspen; 1993. p. 103-77.
- Greenman P. Principles of manual medicine. 2nd ed. Baltimore: Lippincott Williams and Wilkins; 1996. p. 3-330.
- 52. Maitland G. Periperal manipulation. 3rd ed. London, UK: Butterworth-Heinemann; 1999. p. 1-258.
- 53. Domholdt E. Physical therapy research: principles and applications. 2nd ed. Philiadelphia: W.B. Saunders Company; 2000. p. 83-299.
- 54. Portney L, Watkins P. Foundations of clinical research: applications to practice. 2nd ed. Upper Saddle River, NJ: Prentice-Hall; 2000. p. 83-142.
- 55. Haneline M. Evidence-based chiropractic practice. Sudbury, MA: Jones and Bartlett Publishers, Inc.; 2007. p. 1-175.
- Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther 2003;83:713-21.
- 57. Jadad A, Moore R, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Controlled Clin Trials 1996;17:1-12.
- 58. Sackett DL, Rosenberg WM, Gray JA, Haynes RB, Richardson WS. Evidence based medicine: what it is and what it isn't. BMJ 1996;312:71-2.
- 59. Smith BH. Evidence based medicine. Rich sources of evidence are ignored. BMJ 1996;313:169 [author reply 170-61].
- 60. Haldeman S, Underwood M. Commentary on the United Kingdom evidence report about the effectiveness of manual therapies. Chiropr Osteopat 2010;18:4.
- 61. Sege RD, De Vos E. Evidence-based health care for children: what are we missing? The Commonwealth Fund; April 2010. Available from: http://www.commonwealthfund.org/ Publications/Issue-Briefs/2010/Apr/Evidence-Based-Health-Care-for-Children-What-Are-We-Missing.aspx.
- 62. Becker RE, Greig NH. Neuropsychiatric clinical trials: should they accommodate real-world practices or set standards for clinical practices? J Clin Psychopharmacol 2009;29:56-64.
- 63. Young G. Evidence-based medicine in podiatric residency training. Clin Podiatr Med Surg. 2007;24:11-6, v.
- 64. Rosner AL. Evidence-based medicine: revisiting the pyramid of priorities. J Bodyw Mov Ther 2012;16:42-9.
- 65. Guyatt G. Evidence-based medicine—a new approach to teaching the practice of medicine. JAMA 1992;268:2420-5.
- 66. Johnson C. Evidence-based practice in 5 simple steps. J Manipulative Physiol Ther 2008;31:169-70.
- 67. Manchikanti L, Hirsch JA, Smith HS. Evidence-based medicine, systematic reviews, and guidelines in interventional pain management: part 2: randomized controlled trials. Pain Physician 2008;11:717-73.
- Neuhauser D, Diaz M. Shuffle the deck, flip that coin: randomization comes to medicine. Qual Saf Health Care 2004;13:315-6.

- 69. Dananberg HJ. Manipulation of the ankle as a method of treatment for ankle and foot pain. J Am Podiatr Med Assoc 2004;94:395-9.
- Jennings J, Davies G. Treatment of cuboid syndrome secondary to lateral ankle sprains: a case series. J Orthop Sports Phys Ther 2005;35:409-15.
- 71. Wyatt LH. Conservative chiropractic management of recalcitrant foot pain after fasciotomy: a retrospective case review. J Manipulative Physiol Ther 2006;29:398-402.
- 72. Crossley K, Bennell K, Green S, Cowan S, McConnell J. Physical therapy for patellofemoral pain. A randomized, double-blinded, placebo-controlled trial. Am J Sports Med 2002;30:857-65.
- 73. Deyle G, Henderson N, Matekel R, Ryder M, Barber M, Allison S. Effectiveness of manual physical therapy and exercise in osteoarthritis of the knee. Ann Intern Med 2000; 132:173-80.
- 74. Green T, Refshauge K, Crosbie J, Adams R. A randomized controlled trial of a passive accessory joint mobilization on acute ankle inversion sprains. Phys Ther 2001;81:984-94.
- 75. Altman D, Schulz K, Moher D, et al. The revised CONSORT statement for reporting randomized trials: explanation and elaboration. Ann Intern Med 2001;134:663-94.
- Kirby A, Gebski V, Keech AC. Determining the sample size in a clinical trial. Med J Aust 2002;177:256-7.
- 77. Peto R, Pike M, Armitage P, et al. Design and analysis of randomized clinical trials requiring prolonged observation of each patient. Br J Cancer 1976;34:585-612.
- Armitage P. Exclusions, losses to follow-up and withdrawals in clinical trials. In: Shapiro SH, Louis TA, editors. Clinical trials. New York: Marcel Dekker; 1983.
- 79. Gail MH. Eligibility exclusions, losses to follow-up, removal of randomized patients, and uncounted events in cancer clinical trials. Cancer Treat Rep 1985;69:1107-13.
- Sandler RS, Halabi S, Baron JA, et al. A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. N Engl J Med 2003;348: 883-90.
- Hollis S, Campbell F. What is meant by intention to treat analysis? Survey of published randomised controlled trials. BMJ 1999;319:670-4.
- 82. Gravel J, Opatrny L, Shapiro S. The intention-to-treat approach in randomized controlled trials: are authors saying what they do and doing what they say? Clin Trials 2007;4: 350-6.
- Porta N, Bonet C, Cobo E. Discordance between reported intention-to-treat and per protocol analyses. J Clin Epidemiol 2007;60:663-9.
- 84. Baron G, Boutron I, Giraudeau B, Ravaud P. Violation of the intent-to-treat principle and rate of missing data in superiority trials assessing structural outcomes in rheumatic diseases. Arthritis Rheum 2005;52:1858-65.
- 85. Furlan A, Yazdi F, Tsertsvadze A, et al. Complementary and alternative therapies for back pain II. Evidence Report/ Technology Assessment No. 194. (Prepared by the University of Ottawa Evidence-based Practice Center under Contract No. 290-2007-10059-I (EPCIII). AHRQ Publication No. 10(11)E007. Rockville, MD: Agency for Healthcare Research and Quality; 2010.
- Rubinstein SM, van Middelkoop M, Assendelft WJ, de Boer MR, van Tulder MW. Spinal manipulative therapy for chronic low-back pain: an update of a Cochrane review. Spine (Phila Pa 1976) 2011;36:E825-46.
- 87. Handbook for the Preparation of Explicit Evidence-Based Clinical Practice Guidelines; New Zealand Guidelines Group. Greer NMG, Logan A, Halaas G; A Practical

Approach to Evidence Grading, Joint Commission Journal on Quality Improvement, 2000;26:700-12.

- French HP, Brennan A, White B, Cusack T. Manual therapy for osteoarthritis of the hip or knee—a systematic review. Man Ther 2011;16:109-17.
- Dixit S, DiFiori J, Burton M, Mines B. Management of patellofemoral pain syndrome. Am Fam Physician 2007;75: 194-202.
- 90. Ivins D. Acute ankle sprain: an update. Am Fam Physician 2006;74:1714-20.
- 91. Kerkhoffs G, Handoll H, de Bie R, Rowe B, Struijs P. Surgical versus conservative treatment for acute injuries of the lateral ligament complex of the ankle in adults. Cochrane Database Syst Rev 2007:CD000380.
- 92. Manchikanti L. Evidence-based medicine, systematic reviews, and guidelines in interventional pain management, part I: introduction and general considerations. Pain Physician 2008;11:161-86.
- 93. Chikwe J. Evidence based general practice. Findings of study should prompt debate. BMJ 1996;313:114 [author reply 114-5].
- Davenport TE, Kulig K, Fisher BE. Ankle manual therapy for individuals with post-acute ankle sprains: description of a randomized, placebo-controlled clinical trial. BMC Complement Altern Med 2010;10:59.
- 95. Abbott JH, Robertson MC, McKenzie JE, Baxter GD, Theis JC, Campbell AJ. Exercise therapy, manual therapy, or both, for osteoarthritis of the hip or knee: a factorial randomised controlled trial protocol. Trials 2009;10:11.
- 96. Poulsen E, Christensen HW, Roos EM, Vach W, Overgaard S, Hartvigsen J. Non-surgical treatment of hip osteoarthritis. Hip school, with or without the addition of manual therapy, in comparison to a minimal control intervention: protocol for a three-armed randomized clinical trial. BMC Musculoskelet Disord 2011;12:88.
- 97. Mosler AB, Blancha PD, Hiskins BC. The effect of manual therapy on hip joint range of motion, pain and eggbeater kick performance in water polo players. Phys Ther Sport 2006;7: 128-36.
- Cibulka, Delitto A. A comparison of two different methods to treat hip pain in runners. J Orthop Sports Phys Ther 1993; 17:172-6.
- 99. MacDonald C, Whitman J, Cleland J, Smith M, Hoeksma H. Clinical outcomes following manual physical therapy and exercise for hip osteoarthritis: a case series. J Orthop Sports Phys Ther 2006;36:588-99.
- 100. Brantingham JW, Globe G, Cassa T, et al. A single-group pre-test post-test design using full kinetic chain manipulative therapy with rehabilitation in the treatment of 18 patients with hip osteoarthritis. J Manipulative Physiol Ther 2010;33: 445-57.
- 101. Brantingham JW, Globe G, Cassa T, et al. A single-group pre-test post-test design using full kinetic chain manipulative therapy with rehabilitation in the treatment of 27 patients with hip osteoarthritis. J Amer Chiropr Assoc 2010;47:8-26.
- 102. de Luca K, Pollard H, Brantingham J, Globe G, Cassa T. Chiropractic management of the kinetic chain for the treatment of hip osteoarthritis: an Australian case series. J Manipulative Physiol Ther 2010;33:474-9.
- 103. Whipple T, Plafcan D, Sebastianelli W. Manipulative treatment of hip pain in a ballet student: a case study. J Dance Med Sci 2004;8:53-5.
- 104. Pollard H, Hoskins W, Schmerl M. The use of hip manipulation in the management of acetabular labrum injury. Chiropr J Aust 2007;37:49-56.

- 105. Perlman AI, Sabina A, Williams AL, Njike VY, Katz DL. Massage therapy for osteoarthritis of the knee: a randomized controlled trial. Arch Intern Med 2006;166:2533-8.
- 106. Moss P, Sluka K, Wright A. The initial effects of knee joint mobilization on osteoarthritic hyperalgesia. Man Ther 2007; 12:109-18.
- 107. Ko T, Lee S, Lee D. Manual Therapy and exercise for OA knee: effects on muscle strength, proprioception, and functional performance. J Phys Ther Sci 2009;21:293-9.
- 108. Fish D, Kretzmann H, Brantingham JW, Globe G, Korporaal C, Moen J. A randomized clinical trial to determine the effect of combining a topical capsaicin cream and knee joint mobilization in the treatment of osteoarthritis of the knee. J Amer Chiropr Assoc 2008;45:8-23.
- 109. Pollard H, Ward G, Hoskins W, Hardy K. The effect of a manual therapy knee protocol on osteoarthritic knee pain: a randomised controlled trial. J Can Chiropr Assoc 2008;52: 229-42.
- 110. Cliborne AV, Wainner RS, Rhon DI, et al. Clinical hip tests and a functional squat test in patients with knee osteoarthritis: reliability, prevalence of positive test findings, and shortterm response to hip mobilization. J Orthop Sports Phys Ther 2004;34:676-85.
- 111. Currier LL, Froehlich PJ, Carow SD, et al. Development of a clinical prediction rule to identify patients with knee pain and clinical evidence of knee osteoarthritis who demonstrate a favorable short-term response to hip mobilization. Phys Ther 2007;87:1106-19.
- 112. Bozkurt M, Yilmaz E, Akseki D, Havitcioglu H, Gunal I. The evaluation of the proximal tibiofibular joint for patients with lateral knee pain. Knee 2004;11:307-12.
- 113. Brantingham JW, Globe G, Tong V, et al. Diversified chiropractic adjusting and management in the treatment of 5 clinically diagnosed meniscus injury patients with MRI imaging in 4 cases. J Amer Chiropr Assoc 2008;45:11-24.
- 114. Collins N, Crossley K, Beller E, Darnell R, McPoil T, Vicenzino B. Foot orthoses and physiotherapy in the treatment of patellofemoral pain syndrome: a randomized controlled trial. BMJ 2008;337:a1735.
- 115. Brantingham JW, Globe GA, Jensen ML, et al. A feasibility study comparing two chiropractic protocols in the treatment of patellofemoral pain syndrome. J Manipulative Physiol Ther 2009;32:536-48.
- 116. van den Dolder PA, Roberts DL. Six sessions of manual therapy increase knee flexion and improve activity in people with anterior knee pain: a randomised controlled trial. Aust J Physiother 2006;52:261-4.
- 117. Hains G, Hains F. Patellofemoral pain syndrome managed by ischemic compression to the trigger points located in the peri-patellar and retro-patellar areas: a randomized clinical trial. ClinChiroprac 2010;13:201-9.
- 118. Hillermann B, Gomes A, Korporaal C, Jackson D. A pilot study comparing the effects of spinal manipulative therapy with those of extra-spinal manipulative therapy on quadriceps muscle strength. J Manipulative Physiol Ther 2006;29: 2145-9.
- 119. Drover JM, Forand DR, Herzog W. Influence of active release technique on quadriceps inhibition and strength: a pilot study. J Manipulative Physiol Ther 2004;27:408-13.
- 120. Suter E, McMorland G, Herzog W, Bray R. Conservative lower back treatment reduces inhibition in knee-extensor muscles: a randomized controlled trial. J Manipulative Physiol Ther 2000;23:76-80.
- 121. Rowlands B, Brantingham J. The efficacy of patella mobilisation in patients suffering from patellofemoral pain syndrome. JNMS 1999;7:142-9.

- 122. Iverson CA, Sutlive TG, Crowell MS, et al. Lumbopelvic manipulation for the treatment of patients with patellofemoral pain syndrome: development of a clinical prediction rule. J Orthop Sports Phys Ther 2008;38:297-312.
- 123. Pellow JE, Brantingham JW. The efficacy of adjusting the ankle in the treatment of subacute and chronic grade I and grade II ankle inversion sprains. J Manipulative Physiol Ther 2001;24:17-24.
- 124. Coetzer D, Brantingham J, Nook B. The relative effectiveness of piroxicam compared to manipulation in the treatment of acute grades 1 and 2 inversion ankle sprains. JNMS 2001; 9:1-12.
- 125. Collins N, Teys P, Vicenzino B. The initial effects of a Mulligan's mobilization with movement technique on dorsiflexion and pain in subacute ankle sprains. Man Ther 2004;9:77-82.
- 126. Lopez-Rodriguez S, Fernandez de-Las-Penas C, Alburquerque-Sendin F, Rodriguez-Blanco C, Palomeque-del-Cerro L. Immediate effects of manipulation of the talocrural joint on stabilometry and baropodometry in patients with ankle sprain. J Manipulative Physiol Ther 2007;30:186-92.
- 127. Köhne E, Jones A, Korporaal C, Price J, Brantingham J, Globe G. A prospective, single-blinded, randomized, controlled clinical trial of the effects of manipulation on proprioception and ankle dorsiflexion in chronic recurrent ankle sprain. J Amer Chiropr Assoc 2007;44:7-17.
- 128. Joseph LC, de Busser N, Brantingham JW, et al. The comparative effect of muscle energy technique vs. manipulation for the treatment of chronic recurrent ankle sprain. J Amer Chiropr Assoc 2010;47:8-22.
- 129. Yeo HK, Wright A. Hypoalgesic effect of a passive accessory mobilisation technique in patients with lateral ankle pain. Man Ther 2011;16:373-7.
- 130. Reid A, Birmingham TB, Alcock G. Efficacy of mobilization with movement for patients with limited dorsiflexion after ankle sprain: a crossover trial. Physiother Can 2007;59: 166-72.
- 131. Grindstaff TL, Beazell JR, Sauer LD, Magrum EM, Ingersoll CD, Hertel J. Immediate effects of a tibiofibular joint manipulation on lower extremity H-reflex measurements in individuals with chronic ankle instability. J Electromyogr Kinesiol 2011;21:652-8.
- 132. Lubbe D, Lakhani E, Brantingham J. A clinical trial to investigate the relative effectiveness of manipulation and rehabilitation versus stand alone rehabilitation, in subjects with Chronic Ankle Instability. M.Tech: Chiropractic dissertation. Durban, South Africa, Durban University of Technology; 2011.
- 133. Dananberg HJ, Shearstone J, Guillano M. Manipulation method for the treatment of ankle equinus. J Am Podiatr Med Assoc 2000;90:385-9.
- 134. Whitman JM, Cleland JA, Mintken PE, et al. Predicting short-term response to thrust and nonthrust manipulation and exercise in patients post inversion ankle sprain. J Orthop Sports Phys Ther 2009;39:188-200.
- 135. Vicenzino B, Branjerdporn M, Teys P, Jordan K. Initial changes in posterior talar glide and dorsiflexion of the ankle after mobilization with movement in individuals with recurrent ankle sprain. J Orthop Sports Phys Ther 2006;36:464-71.
- 136. Dimou E, Brantingham J, Wood T. A randomized, controlled trial (with blinded observer) of chiropractic manipulation and Achilles stretching vs orthotics for the treatment of plantar fasciitis. J Amer Chiropr Assoc 2004; 41:32-42.
- 137. Cleland JA, Abbott JH, Kidd MO, et al. Manual physical therapy and exercise versus electrophysical agents and

exercise in the management of plantar heel pain: a multicenter randomized clinical trial. J Orthop Sports Phys Ther 2009;39:573-85.

- 138. Costa I, Dyson A. The integration of acetic acid iontophoresis, orthotic therapy and physical rehabilitation for chronic plantar fasciitis: a case study. JCCA 2007;51:166-74.
- 139. Young B, Walker MJ, Strunce J, Boyles R. A combined treatment approach emphasizing impairment-based manual physical therapy for plantar heel pain: a case series. J Orthop Sports Phys Ther 2004;34:725-33.
- Petersen S, Brantingham J, Kretzmann H. The efficacy of chiropractic adjustment in the treatment of primary metatarsalgia. Euro J Chiropr 2003;49:267-79.
- 141. Govender N, Kretzmann H, Price J, Brantingham J, Globe G. A single-blinded randomized placebo-controlled clinical trial of manipulation and mobilization in the treatment of Morton's neuroma. J Amer Chiropr Assoc 2007;44:9-18.
- 142. Cashley D. Manipulative therapy in the treatment of plantar digital neuritis (Morton's metatarsalgia). Br J Podiatr 2000;3: 67-9.
- 143. Shamus J, Shamus E, Gugel RN, Brucker BS, Skaruppa C. The effect of sesamoid mobilization, flexor hallucis strengthening, and gait training on reducing pain and restoring function in individuals with hallux limitus: a clinical trial. J Orthop Sports Phys Ther 2004;34:368-76.
- 144. Solan MC, Calder JD, Bendall SP. Manipulation and injection for hallux rigidus. Is it worthwhile? J Bone Joint Surg Br 2001;83:706-8.
- 145. Brantingham J, Chang M, Gendreau D, Price J. The effect of chiropractic adjusting, exercises and modalities on a 32-year old professional male golfer with hallux rigidus: a case report. Clin Chiropr 2007;10:91-6.
- 146. Brantingham J, Guiry S, Kretzmann H, Globe G, Kite V. A pilot study of the efficacy of a conservative chiropractic protocol using graded mobilization, manipulation and ice in the treatment of symptomatic hallux abductovalgus bunions. Clin Chiropr 2005;8:117-33.
- 147. du Plessis M, Zipfel B, Brantingham JW, et al. Manual and manipulative therapy compared to night splint for symptomatic hallux abducto valgus: an exploratory randomised clinical trial. Foot (Edinb) 2011;21:71-7.
- 148. Vaillant J, Rouland A, Martigne P, et al. Massage and mobilization of the feet and ankles in elderly adults: effect on clinical balance performance. Man Ther 2009.
- 149. Greenstein JS, Bishop BN, Edward JS, Topp RV. The effects of a closed-chain, eccentric training program on hamstring injuries of a professional football cheerleading team. J Manipulative Physiol Ther 2011;34:195-200.
- 150. Sandell J, Palmgren PJ, Bjorndahl L. Effect of chiropractic treatment on hip extension ability and running velocity among young male running athletes. J Chiropr Med 2008;7: 39-47.
- 151. Bronfort G, Haas M, Evans R, Kawchuck G, Dagenais S. Evidence-informed management of chronic low back pain with spinal manipulation and mobilization. Spine 2008;8: 213-25.
- 152. Hurwitz EL, Carragee EJ, van der Velde G, et al. Treatment of neck pain: noninvasive interventions: results of the Bone and Joint Decade 2000-2010 Task Force on Neck Pain and

Its Associated Disorders. Spine 2008;33(4 Suppl):S123-52.

- 153. Degenhardt B, Snider K, Snider E, Johnson J. Interobserver reliability of osteopathic palpatory diagnostic tests of the lumbar spine: improvements from consensus training. J Am Osteopath Assoc 2005;105:465-73.
- 154. Senna MK, Machaly SA. Does maintained spinal manipulation therapy for chronic non-specific low back pain result in better long term outcome? Spine (Phila Pa 1976) 2011; 36:1427-37.
- 155. Haas M, Groupp E, Kraemer DF. Dose-response for chiropractic care of chronic low back pain. Spine J 2004;4: 574-83.
- 156. Haas M, Sharma R, Stano M. Cost-effectiveness of medical and chiropractic care for acute and chronic low back pain. J Manipulative Physiol Ther 2005;28:555-63.
- 157. Stakes N, Myburgh C, Brantingham J, Moyer R, Jensen M, Globe G. A prospective randomized clinical trial to determine efficacy of combined spinal manipulation and patella mobilization compared to patella mobilization alone in the conservative management of patellofemoral pain syndrome. J Amer Chiropr Assoc 2006;43:11-8.
- 158. Taylor K, Brantingham J. An investigation into the effect of exercise combined with patella mobilisation/manipulation in the treatment of patellofemoral pain syndrome. Euro J Chiropr 2003;51:5-17.
- 159. Deyle GD, Allison SC, Matekel RL, et al. Physical therapy treatment effectiveness for osteoarthritis of the knee: a randomized comparison of supervised clinical exercise and manual therapy procedures versus a home exercise program. Phys Ther 2005;85:1301-17.
- 160. Tucker M, Brantingham J, Myburgh C. The relative effectiveness of a non-steroidal anti-inflammatory medication (meloxicam) versus manipulation in the treatment of osteoarthritis of the knee. Euro J Chiropr 2003;50:163-84.
- 161. Porthouse J, Torgerson DJ. The need for randomized controlled trials in podiatric medical research. J Am Podiatr Med Assoc 2004;94:221-8.
- 162. Licciardone JC. Time for the osteopathic profession to take the lead in musculoskeletal research. Osteopath Med Prim Care 2009;3:6.
- 163. Fryer GA, Mudge JM, McLaughlin PA. The effect of talocrural joint manipulation on range of motion at the ankle. J Manipulative Physiol Ther 2002;25:384-90.
- 164. Licciardone JC, Stoll ST, Cardarelli KM, Gamber RG, Swift JN, Winn WB. A randomized controlled trial of osteopathic manipulative treatment following knee or hip arthroplasty. J Am Osteopath Assoc 2004;104:193-202.
- 165. Wessely M, Scheel L. Chiropractic management of injuries sustained during brazilian capoeira (conference proceedings). J Chiropr Edu 2006;20:111.
- 166. Thorman P, Dixner A, Sundberg T. Effects of chiropractic care on pain and function in patients with hip osteoarthritis waiting for arthroplasty: a clinical pilot trial. J Manipulative Physiol Ther 2010;33:438-44.
- 167. Hansen SF, AL SL, Jensen TS, Leboeuf-Yde C, Hestbaek L. The Nordic maintenance care program: what are the indications for maintenance care in patients with low back pain? A survey of the members of the Danish Chiropractors' Association. Chiropr Osteopat 2010;18:25.